• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Combining Deep and Handcrafted Image Features for Vehicle Classification in Drone Imagery

    Thumbnail
    View/Open
    Le214084.pdf (412.6Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Le, Xuesong
    Wang, Yufei
    Jo, Jun
    Griffith University Author(s)
    Jo, Jun
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Using unmanned aerial vehicles (UAVs) as devices for traffic data collection exhibits many advantages in collecting traffic information. This paper presents an efficient method based on the deep learning and handcrafted features to classify vehicles taken from drone imagery. Experimental results show that compared to classification algorithms based on pre-trained CNN or hand-crafted features, the proposed algorithm exhibits higher accuracy in vehicle recognition at different UAV altitudes with different view scopes, which can be used in future traffic monitoring and control in metropolitan areas.Using unmanned aerial vehicles (UAVs) as devices for traffic data collection exhibits many advantages in collecting traffic information. This paper presents an efficient method based on the deep learning and handcrafted features to classify vehicles taken from drone imagery. Experimental results show that compared to classification algorithms based on pre-trained CNN or hand-crafted features, the proposed algorithm exhibits higher accuracy in vehicle recognition at different UAV altitudes with different view scopes, which can be used in future traffic monitoring and control in metropolitan areas.
    View less >
    Conference Title
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA)
    DOI
    https://doi.org/10.1109/DICTA.2018.8615853
    Copyright Statement
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/384474
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander