Feature extraction using dominant frequency bands and time-frequency image analysis for chatter detection in milling

View/ Open
Author(s)
Chen, Yun
Li, Huaizhong
Hou, Liang
Bu, Xiangjian
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Chatter is a cause of low surface quality and productivity in milling and crucial features need to be extracted for accurate chatter detection and suppression. This paper introduces a novel feature extraction approach for chatter detection by using image analysis of dominant frequency bands from the short-time Fourier transform (STFT) spectrograms. In order to remove the environmental noises and highlight chatter related characteristics, dominant frequency bands with high energy are identified by applying the squared energy operator to the synthesized fast Fourier transform (FFT) spectrum. The time-frequency spectrogram of ...
View more >Chatter is a cause of low surface quality and productivity in milling and crucial features need to be extracted for accurate chatter detection and suppression. This paper introduces a novel feature extraction approach for chatter detection by using image analysis of dominant frequency bands from the short-time Fourier transform (STFT) spectrograms. In order to remove the environmental noises and highlight chatter related characteristics, dominant frequency bands with high energy are identified by applying the squared energy operator to the synthesized fast Fourier transform (FFT) spectrum. The time-frequency spectrogram of the vibration signal is divided into a set of grayscale sub-images according to the dominant frequency bands. Statistical image features are extracted from those sub-images to describe the machining condition and assessed in terms of their separability capabilities. The proposed feature extraction method is verified by using dry milling tests of titanium alloy Ti6Al4V and compared with two existing feature extraction techniques. The results indicate the efficiency of the time-frequency image features from dominant frequency bands for chatter detection and their better performance than the time domain features and wavelet-based features in terms of their separability capabilities.
View less >
View more >Chatter is a cause of low surface quality and productivity in milling and crucial features need to be extracted for accurate chatter detection and suppression. This paper introduces a novel feature extraction approach for chatter detection by using image analysis of dominant frequency bands from the short-time Fourier transform (STFT) spectrograms. In order to remove the environmental noises and highlight chatter related characteristics, dominant frequency bands with high energy are identified by applying the squared energy operator to the synthesized fast Fourier transform (FFT) spectrum. The time-frequency spectrogram of the vibration signal is divided into a set of grayscale sub-images according to the dominant frequency bands. Statistical image features are extracted from those sub-images to describe the machining condition and assessed in terms of their separability capabilities. The proposed feature extraction method is verified by using dry milling tests of titanium alloy Ti6Al4V and compared with two existing feature extraction techniques. The results indicate the efficiency of the time-frequency image features from dominant frequency bands for chatter detection and their better performance than the time domain features and wavelet-based features in terms of their separability capabilities.
View less >
Journal Title
Precision Engineering
Volume
56
Copyright Statement
© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Physical sciences
Engineering