• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hafnium and vanadium nitride multilayer coatings [HfN/VN](n) deposited onto HSS cutting tools for dry turning of a low carbon steel: a tribological compatibility case study

    Author(s)
    Navarro-Devia, JH
    Amaya, C
    Caicedo, JC
    Martinez, JH
    Aperador, W
    Griffith University Author(s)
    Navarro Devia, John H.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    This paper shows tribological compatibility enhancement in dry turning of a low carbon steel (AISI 1020) with High-speed steel cutting tools, due to physical vapor deposition (PVD) of hafnium and vanadium nitride multilayer coatings ([HfN/VN]n), with different bilayer number system in each tool (n = 1, n = 30, n = 50, and n = 80). Tool wear mechanisms were assessed by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques, and surface integrity by roughness measurement and SEM inspection. Results show these multilayer coatings increase tool life up to 43%, and modify contact at ...
    View more >
    This paper shows tribological compatibility enhancement in dry turning of a low carbon steel (AISI 1020) with High-speed steel cutting tools, due to physical vapor deposition (PVD) of hafnium and vanadium nitride multilayer coatings ([HfN/VN]n), with different bilayer number system in each tool (n = 1, n = 30, n = 50, and n = 80). Tool wear mechanisms were assessed by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques, and surface integrity by roughness measurement and SEM inspection. Results show these multilayer coatings increase tool life up to 43%, and modify contact at tool/workpiece interface, as a function of bilayer number (n), due to their outstanding mechanical and tribological properties as a low coefficient of friction, high thermal conductivity, and high hardness; this produces a decrease of chip compression ratio, from 3.6 to 2.7, and workpiece roughness almost 1.6 μm lesser with the tool [HfN/VN]80. Moreover, improvement of workpiece integrity includes its corrosion resistance, from a corrosion rate of 1.5 mmy, which decrease exponentially with higher bilayer number, to a corrosion rate lower than 0.1 mmy obtained with 80 bilayers, due to the change of chip morphology. Therefore, [HfN/VN]n coatings could enhance productivity and quality in an industrial manufacturing application, as these protective thin films increase tribological compatibility of tool/workpiece system.
    View less >
    Journal Title
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
    Volume
    101
    Issue
    5-8
    DOI
    https://doi.org/10.1007/s00170-018-3020-8
    Subject
    Mathematical Sciences
    Information and Computing Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/384530
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander