• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites

    Thumbnail
    View/Open
    Embargoed until: 2021-05-07
    Author(s)
    Moudood, Abdul
    Rahman, Anisur
    Khanlou, Hossein Mohammad
    Hall, Wayne
    Oechsner, Andreas
    Francucci, Gaston
    Griffith University Author(s)
    Moudood, A H M Abdul
    Rahman, Anisur
    Mohammad Khanlou, Hossein
    Hall, Wayne
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    The growing usage of bio-composite materials in different engineering applications demands a thorough understanding of their performance during their service. Extreme environmental conditions, such as warm, humid, and freezing environments, among others, can degrade the mechanical properties of the bio-composites when they are exposed to harsh environmental conditions. In addition, the use of these composites in underwater applications can also shorten their life cycle. In this work, the durability and mechanical performance (tensile and flexural behavior) of flax/bio-epoxy composites exposed to different environmental ...
    View more >
    The growing usage of bio-composite materials in different engineering applications demands a thorough understanding of their performance during their service. Extreme environmental conditions, such as warm, humid, and freezing environments, among others, can degrade the mechanical properties of the bio-composites when they are exposed to harsh environmental conditions. In addition, the use of these composites in underwater applications can also shorten their life cycle. In this work, the durability and mechanical performance (tensile and flexural behavior) of flax/bio-epoxy composites exposed to different environmental conditions were evaluated. These conditions were chosen to replicate those found outdoors that can affect the durability of these materials: water immersion, warm humid environment and freeze-thaw conditions. Moisture and water absorption behavior were evaluated and the water content (or exposure time) was related to the physical changes and mechanical properties. Results show that the mechanical properties of flax/bio-epoxy composites are clearly degraded by water ageing when they are compared to the “as manufactured” composites. The tensile strength and modulus is decreased approximately by 9% and 57%, respectively for water saturated (immersed in water until saturation) samples compared to as manufactured samples. On contrary, this reduction rate is only 0.8% and 3%, respectively in case of humidity saturated (exposed to humid environment until saturation) samples. Furthermore, water incurred more severe effects on the flexural properties of the composites, since their flexural strength and modulus is decreased by 64% and 70%, respectively, as compared to as manufactured samples. It was found, however, that these properties can be partially regained after drying the water aged composites. Warm humid environments and freezing-thawing cycles have very little effect on the bio-composites.
    View less >
    Journal Title
    COMPOSITES PART B-ENGINEERING
    Volume
    171
    DOI
    https://doi.org/10.1016/j.compositesb.2019.05.032
    Copyright Statement
    © 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Engineering
    Publication URI
    http://hdl.handle.net/10072/384615
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander