• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An enhanced associative learning-based exploratory whale optimizer for global optimization

    Author(s)
    Heidari, Ali Asghar
    Aljarah, Ibrahim
    Faris, Hossam
    Chen, Huiling
    Luo, Jie
    Mirjalili, Seyedali
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Whale optimization algorithm (WOA) is a recent nature-inspired metaheuristic that mimics the cooperative life of humpback whales and their spiral-shaped hunting mechanism. In this research, it is first argued that the exploitation tendency of WOA is limited and can be considered as one of the main drawbacks of this algorithm. In order to mitigate the problems of immature convergence and stagnation problems, the exploitative and exploratory capabilities of modified WOA in conjunction with a learning mechanism are improved. In this regard, the proposed WOA with associative learning approaches is combined with a recent variant ...
    View more >
    Whale optimization algorithm (WOA) is a recent nature-inspired metaheuristic that mimics the cooperative life of humpback whales and their spiral-shaped hunting mechanism. In this research, it is first argued that the exploitation tendency of WOA is limited and can be considered as one of the main drawbacks of this algorithm. In order to mitigate the problems of immature convergence and stagnation problems, the exploitative and exploratory capabilities of modified WOA in conjunction with a learning mechanism are improved. In this regard, the proposed WOA with associative learning approaches is combined with a recent variant of hill climbing local search to further enhance the exploitation process. The improved algorithm is then employed to tackle a wide range of numerical optimization problems. The results are compared with different well-known and novel techniques on multi-dimensional classic problems and new CEC 2017 test suite. The extensive experiments and statistical tests show the superiority of the proposed BMWOA compared to WOA and several well-established algorithms.
    View less >
    Journal Title
    Neural Computing and Applications
    DOI
    https://doi.org/10.1007/s00521-019-04015-0
    Subject
    Artificial Intelligence and Image Processing
    Cognitive Sciences
    Electrical and Electronic Engineering
    Publication URI
    http://hdl.handle.net/10072/384634
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander