• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Acute Biochemical, Cardiovascular, and Autonomic Response to Hyperbaric (4 atm) Exposure in Healthy Subjects

    View/Open
    SLOMKO167590.pdf (1.791Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Kozakiewicz, Mariusz
    Slomko, Joanna
    Buszko, Katarzyna
    Sinkiewicz, Wladyslaw
    Klawe, Jacek J
    Tafil-Klawe, Malgorzata
    Newton, Julia L
    Zalewski, Pawel
    Griffith University Author(s)
    Slomko, Joanna
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The aim of this study was to explore the effect of a hyperbaric environment alone on the cardiovascular system by ensuring elimination of factors that may mask the effect on hyperbaria. The research was performed in a hyperbaric chamber to eliminate the effect of physical activity and the temperature of the aquatic environment. Biochemical analysis and examination with the Task Force Monitor device were performed before and immediately after exposure. TFM was used for noninvasive examination of the cardiovascular system and the functional evaluation of the autonomic nervous system. Natriuretic peptides were measured as ...
    View more >
    The aim of this study was to explore the effect of a hyperbaric environment alone on the cardiovascular system by ensuring elimination of factors that may mask the effect on hyperbaria. The research was performed in a hyperbaric chamber to eliminate the effect of physical activity and the temperature of the aquatic environment. Biochemical analysis and examination with the Task Force Monitor device were performed before and immediately after exposure. TFM was used for noninvasive examination of the cardiovascular system and the functional evaluation of the autonomic nervous system. Natriuretic peptides were measured as biochemical markers which were involved in the regulation of haemodynamic circulation vasoconstriction (urotensin II). L-arginine acted as a precursor of the level of the nitric oxide whereas angiotensin II and angiotensin (1–7) were involved in cardiac remodeling. The study group is comprised of 18 volunteers who were professional divers of similar age and experience. The results shown in our biochemical studies do not exceed reference ranges but a statistically significant increase indicates the hyperbaric environment is not without impact upon the human body. A decrease in HR, an increase in mBP, dBP, and TPR, and increase in parasympathetic heart nerves activity suggest an increase in heart afterload with a decrease in heart activity within almost one hour after hyperbaric exposure. Results confirm that exposure to a hyperbaric environment has significant impact on the cardiovascular system. This is confirmed both by changes in peptides associated with poorer cardiovascular outcomes, where a significant increase in the studied parameters was observed, and by noninvasive examination.
    View less >
    Journal Title
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE
    DOI
    https://doi.org/10.1155/2018/5913176
    Copyright Statement
    © 2018 Mariusz Kozakiewicz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Traditional, complementary and integrative medicine
    Publication URI
    http://hdl.handle.net/10072/384645
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander