• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A lossless online Bayesian classifier

    Author(s)
    Thi, Thu Thuy Nguyen
    Tien, Thanh Nguyen
    Sharma, Rabi
    Liew, Alan Wee-Chung
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    We are living in a world progressively driven by data. Besides the issue that big data cannot be entirely stored in the main memory as required by traditional offline learning methods, the problem of learning data that can only be collected over time is also very prevalent. Consequently, there is a need of online methods which can handle sequentially arriving data and offer the same accuracy as offline methods. In this paper, we introduce a new lossless online Bayesian-based classifier which uses the arriving data in a 1-by-1 manner and discards each data right after use. The lossless property of our proposed method guarantees ...
    View more >
    We are living in a world progressively driven by data. Besides the issue that big data cannot be entirely stored in the main memory as required by traditional offline learning methods, the problem of learning data that can only be collected over time is also very prevalent. Consequently, there is a need of online methods which can handle sequentially arriving data and offer the same accuracy as offline methods. In this paper, we introduce a new lossless online Bayesian-based classifier which uses the arriving data in a 1-by-1 manner and discards each data right after use. The lossless property of our proposed method guarantees that it can reach the same prediction performance as its offline counterpart regardless of the incremental training order. Experimental results demonstrate its superior performance over many well-known state-of-the-art online learning methods in the literature.
    View less >
    Journal Title
    INFORMATION SCIENCES
    Volume
    489
    DOI
    https://doi.org/10.1016/j.ins.2019.03.031
    Subject
    Mathematical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/384680
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander