• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Controllable one-step growth of bilayer MoS2-WS2/WS2 heterostructures by chemical vapor deposition

    Author(s)
    Zhang, Xiumei
    Xiao, Shaoqing
    Nan, Haiyan
    Mo, Haoxin
    Wan, Xi
    Gu, Xiaofeng
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) offer attractive prospects for practical applications by combining unique physical properties that are distinct from those of traditional structures. In this paper, we demonstrate a three-stage chemical vapor deposition method for the growth of bilayer MoS2–WS2/WS2 heterostructures with the bottom layers being the lateral MoS2-center/WS2-edge monolayer heterostructures and the top layers being the WS2 monolayers. The alternative growth of lateral and vertical heterostructures can be realized by adjusting both the temperature and the carrier gas ...
    View more >
    Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) offer attractive prospects for practical applications by combining unique physical properties that are distinct from those of traditional structures. In this paper, we demonstrate a three-stage chemical vapor deposition method for the growth of bilayer MoS2–WS2/WS2 heterostructures with the bottom layers being the lateral MoS2-center/WS2-edge monolayer heterostructures and the top layers being the WS2 monolayers. The alternative growth of lateral and vertical heterostructures can be realized by adjusting both the temperature and the carrier gas flow direction. The combined effect of both reverse gas flow and higher growing temperature can promote the epitaxial growth of second layer on the activated nucleation centers of the first monolayer heterostructures. By using customized temperature profiles, single heterostructures including monolayer lateral MoS2–WS2 heterostructures and bilayer lateral WS2(2L)–MoS2(2L) heterostructures could also be obtained. Atomic force microscopy, photoluminescence and Raman mapping studies clearly reveal that these different heterostructure samples are highly uniform. These results thus provide a promising and efficient method for the synthesis of complex heterostructures based on different TMDs materials, which would greatly expand the heterostructure family and broaden their applications.
    View less >
    Journal Title
    NANOTECHNOLOGY
    Volume
    29
    Issue
    45
    DOI
    https://doi.org/10.1088/1361-6528/aaddc5
    Subject
    Nanotechnology
    Publication URI
    http://hdl.handle.net/10072/384742
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander