Controllable one-step growth of bilayer MoS2-WS2/WS2 heterostructures by chemical vapor deposition

No Thumbnail Available
File version
Author(s)
Zhang, Xiumei
Xiao, Shaoqing
Nan, Haiyan
Mo, Haoxin
Wan, Xi
Gu, Xiaofeng
Ostrikov, Kostya Ken
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) offer attractive prospects for practical applications by combining unique physical properties that are distinct from those of traditional structures. In this paper, we demonstrate a three-stage chemical vapor deposition method for the growth of bilayer MoS2–WS2/WS2 heterostructures with the bottom layers being the lateral MoS2-center/WS2-edge monolayer heterostructures and the top layers being the WS2 monolayers. The alternative growth of lateral and vertical heterostructures can be realized by adjusting both the temperature and the carrier gas flow direction. The combined effect of both reverse gas flow and higher growing temperature can promote the epitaxial growth of second layer on the activated nucleation centers of the first monolayer heterostructures. By using customized temperature profiles, single heterostructures including monolayer lateral MoS2–WS2 heterostructures and bilayer lateral WS2(2L)–MoS2(2L) heterostructures could also be obtained. Atomic force microscopy, photoluminescence and Raman mapping studies clearly reveal that these different heterostructure samples are highly uniform. These results thus provide a promising and efficient method for the synthesis of complex heterostructures based on different TMDs materials, which would greatly expand the heterostructure family and broaden their applications.

Journal Title
NANOTECHNOLOGY
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Nanotechnology
Persistent link to this record
Citation
Collections