• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Context-Aware Miner for Medical Processes

    Thumbnail
    View/Open
    Terenziani203068.pdf (551.7Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Canensi, Luca
    Leonardi, Giorgio
    Montani, Stefania
    Terenziani, Paolo
    Griffith University Author(s)
    Terenziani, Paolo
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Medical process mining is gaining much attention in recent years, but the available mining algorithms can hardly cope with medical application peculiarities, that require to properly contextualize process patterns. Indeed, most approaches lose the connection between a mined pattern and the relevant portion of the input event log, and can have a limited precision, i.e., they can mine incorrect paths, never appearing in the input log traces. These issues can be very harmful in medical applications, where it is vital that mining results are reliable as much as possible, and properly reference the contextual information, in order ...
    View more >
    Medical process mining is gaining much attention in recent years, but the available mining algorithms can hardly cope with medical application peculiarities, that require to properly contextualize process patterns. Indeed, most approaches lose the connection between a mined pattern and the relevant portion of the input event log, and can have a limited precision, i.e., they can mine incorrect paths, never appearing in the input log traces. These issues can be very harmful in medical applications, where it is vital that mining results are reliable as much as possible, and properly reference the contextual information, in order to facilitate the work of physicians and hospital managers in guaranteeing the highest quality of service to patients. In this paper, we propose a novel approach to medical process mining that operates in a context-aware fashion. We show on a set of critical examples how our algorithm is able to cope with all the issues sketched above. In the future, we plan to test the approach on a real-world medical dataset, and to extend the framework in order to support ef cient and exible trace querying as well.
    View less >
    Journal Title
    Je-LKS: Journal of E-Learning and Knowledge Society
    Volume
    14
    Issue
    1
    Publisher URI
    http://www.je-lks.org/ojs/index.php/Je-LKS_EN/article/view/1453
    DOI
    https://doi.org/10.20368/1971-8829/1453
    Copyright Statement
    © The Author(s) 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Artificial Intelligence and Image Processing
    Specialist Studies in Education
    Publication URI
    http://hdl.handle.net/10072/384750
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander