• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Insights into the relationship between colony formation and extracellular polymeric substances (EPS) composition of the cyanobacterium Microcystis spp

    Author(s)
    Xiao, Man
    Li, Ming
    Duan, Pengfei
    Qu, Zhi
    Wu, Haiming
    Griffith University Author(s)
    Xiao, Man
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Extracellular polymeric substances (EPS) were considered as fundamental substances in colony formation; however, the understanding of EPS composition remains limited. This study analyzed the content and composition of EPS fractions (soluble EPS, loosely bound EPS, and tightly bound EPS) of four Microcystis species from laboratory cultures in both unicellular and colonial morphologies, as well as colonies collected during Microcystis blooms, using fluorescence excitation - emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC). This method enables to make insight into protein-like and humic acid-like ...
    View more >
    Extracellular polymeric substances (EPS) were considered as fundamental substances in colony formation; however, the understanding of EPS composition remains limited. This study analyzed the content and composition of EPS fractions (soluble EPS, loosely bound EPS, and tightly bound EPS) of four Microcystis species from laboratory cultures in both unicellular and colonial morphologies, as well as colonies collected during Microcystis blooms, using fluorescence excitation - emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC). This method enables to make insight into protein-like and humic acid-like components but cannot detect polysaccharides. The EPS was successfully categorized into three humic acid-like components (C1 – C3) and a protein-like component (C4). Component C1 was discovered to be involved in colony formation and colony size growth of Microcystis. EPS content varied among Microcystis morphospecies, such as M. aeruginosa, M. wesenbergii and M. ichthyoblabe, and this was significantly affected by the environmental constraints rather than the morphospecies. The proportion of C1 relating to larger colony size was negatively correlated to temperature and concentrations of TN and TP. The tightly bound EPS directly promoted colony formation, but the soluble EPS or loosely bound EPS alone did not induce colony formation in Microcystis. These results advanced the current knowledge on the chemical materials involved in the colony formation of Microcystis and provided new clues in unicellular-multicellular transformation as well as colonial morphology changes in Microcystis.
    View less >
    Journal Title
    HARMFUL ALGAE
    Volume
    83
    DOI
    https://doi.org/10.1016/j.hal.2019.02.006
    Subject
    Environmental Sciences
    Biological Sciences
    Publication URI
    http://hdl.handle.net/10072/384764
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander