• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Identifying Structure-Property Relationships through SMILES Syntax Analysis with Self-Attention Mechanism

    Author(s)
    Zheng, Shuangjia
    Yan, Xin
    Yang, Yuedong
    Xu, Jun
    Griffith University Author(s)
    Yang, Yuedong
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Recognizing substructures and their relations embedded in a molecular structure representation is a key process for structure–activity or structure–property relationship (SAR/SPR) studies. A molecular structure can be explicitly represented as either a connection table (CT) or linear notation, such as SMILES, which is a language describing the connectivity of atoms in the molecular structure. Conventional SAR/SPR approaches rely on partitioning the CT into a set of predefined substructures as structural descriptors. In this work, we propose a new method to identifying SAR/SPR through linear notation (for example, SMILES) ...
    View more >
    Recognizing substructures and their relations embedded in a molecular structure representation is a key process for structure–activity or structure–property relationship (SAR/SPR) studies. A molecular structure can be explicitly represented as either a connection table (CT) or linear notation, such as SMILES, which is a language describing the connectivity of atoms in the molecular structure. Conventional SAR/SPR approaches rely on partitioning the CT into a set of predefined substructures as structural descriptors. In this work, we propose a new method to identifying SAR/SPR through linear notation (for example, SMILES) syntax analysis with self-attention mechanism, an interpretable deep learning architecture. The method has been evaluated by predicting chemical properties, toxicology, and bioactivity from experimental data sets. Our results demonstrate that the method yields superior performance compared with state-of-the-art models. Moreover, the method can produce chemically interpretable results, which can be used for a chemist to design and synthesize the activity- or property-improved compounds.
    View less >
    Journal Title
    JOURNAL OF CHEMICAL INFORMATION AND MODELING
    Volume
    59
    Issue
    2
    DOI
    https://doi.org/10.1021/acs.jcim.8b00803
    Subject
    Medicinal and biomolecular chemistry
    Theoretical and computational chemistry
    Publication URI
    http://hdl.handle.net/10072/384784
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander