Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Balakrishnan, Vivekananthan
Toan, Dinh
Hoang-Phuong, Phan
Dzung, Viet Dao
Nam-Trung, Nguyen
Year published
2018
Metadata
Show full item recordAbstract
This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately ...
View more >This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications.
View less >
View more >This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications.
View less >
Journal Title
Sensors and Actuators A: Physical
Volume
279
Copyright Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Electronics, sensors and digital hardware
Materials engineering
Materials engineering not elsewhere classified
Mechanical engineering