• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Heat transfer characteristics for practical hydrogen pressure vessels being filled at high pressure

    Thumbnail
    View/Open
    65208_1.pdf (658.5Kb)
    Author(s)
    Woodfield, Peter L
    Monde, Masanori
    Takano, Toshio
    Griffith University Author(s)
    Woodfield, Peter L.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Experiments have been conducted to measure the rise in temperature of hydrogen and vessel wall during filling of commercially available, practical tanks to 35 and 70 MPa. Three test vessels with volumes 205, 130 and 39 liters are investigated. The filling time ranges from 5 to 20 minutes. The heat transfer process is modeled using a one-dimensional unsteady heat conduction equation for the wall coupled with a flow and heat balance for the compressed gas. The model requires heat transfer coefficients between the hydrogen and the wall and the wall and surrounding air. Values of 500 W/(m2K) during filling, 250 W/(m2K) after ...
    View more >
    Experiments have been conducted to measure the rise in temperature of hydrogen and vessel wall during filling of commercially available, practical tanks to 35 and 70 MPa. Three test vessels with volumes 205, 130 and 39 liters are investigated. The filling time ranges from 5 to 20 minutes. The heat transfer process is modeled using a one-dimensional unsteady heat conduction equation for the wall coupled with a flow and heat balance for the compressed gas. The model requires heat transfer coefficients between the hydrogen and the wall and the wall and surrounding air. Values of 500 W/(m2K) during filling, 250 W/(m2K) after filling for the inside wall and 4.5 W/(m2K) for the outside tank wall are tentatively assumed based on results from a previous study on a smaller vessel. The measured temperatures for the hydrogen gas and the wall are in good agreement with the calculations.
    View less >
    Journal Title
    Journal of Thermal Science and Technology
    Volume
    3
    Issue
    2
    DOI
    https://doi.org/10.1299/jtst.3.241
    Copyright Statement
    © 2008 Japan Society of Mechanical Engineers (JSME). The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Energy Generation, Conversion and Storage Engineering
    Interdisciplinary Engineering
    Publication URI
    http://hdl.handle.net/10072/38486
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander