• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Rhizosphere management by biochar and leaching improved plant performance in fresh bauxite residue sand

    Thumbnail
    View/Open
    Rashti163656.pdf (852.6Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Rashti, Mehran Rezaei
    Esfandbod, Maryam
    Phillips, Ian R
    Chen, Chengrong
    Griffith University Author(s)
    Rezaei Rashti, Mehran
    Chen, Chengrong
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    High sodicity and Low nutrient retention in bauxite-processing residue sand (BRS) disposal areas restrict sustainable vegetation management in this highly alkaline environment. Although previous investigations have reported the beneficial effect of organic amendments on BRS rehabilitation, little is known about the underlying mechanisms of this complicated process, particularly after supplementary leaching of biochar amended BRS. We have investigated the coupled effect of supplementary leaching process, biochar [aged acidic (AC) vs alkaline pine (PC)] amendment and di-ammonium phosphate (DAP) fertilisation on rhizosphere ...
    View more >
    High sodicity and Low nutrient retention in bauxite-processing residue sand (BRS) disposal areas restrict sustainable vegetation management in this highly alkaline environment. Although previous investigations have reported the beneficial effect of organic amendments on BRS rehabilitation, little is known about the underlying mechanisms of this complicated process, particularly after supplementary leaching of biochar amended BRS. We have investigated the coupled effect of supplementary leaching process, biochar [aged acidic (AC) vs alkaline pine (PC)] amendment and di-ammonium phosphate (DAP) fertilisation on rhizosphere nutrient dynamic and ryegrass performance in a 116-day glasshouse study. Biochar amendment in DAP + PC and DAP + AC treatments significantly increased and decreased pH (0.3–0.5 units) in all BRS rhizosphere and root-free zones, respectively. The application of alkaline and acidic biochars to BRS have reduced ammonia volatilisation (25–80%) and increased nitrogen retention (9–72%) in comparison with DAP treatment. Supplementary leaching had no significant effect on BRS rhizosphere pH, but reduced the EC values by ca. 62% in biochar-amended treatments. The leachates’ pH remained unchanged (ca. 8) throughout the experiment, while their EC reduced in AC (6 folds) and PC (9 folds) amended treatments, with lower reduction in rhizosphere than root-free zones. The interaction of applied biochars and plant roots generally decreased nutrient leaching from rhizosphere in comparison with root-free zones. Sodium was the dominant cation in the leachate of all treatments and cumulative abundance of exchangeable cations were in the order of Na+ > Ca2+ > K+ > Mg2+ > Al3+. The reduction of BRS salinity has increased plant biomass (ca. 47%) in biochar amended treatments by improving the capacity of fresh BRS rhizosphere for plant establishment.
    View less >
    Journal Title
    Journal of Cleaner Production
    Volume
    219
    DOI
    https://doi.org/10.1016/j.jclepro.2019.02.013
    Copyright Statement
    © 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Environmental engineering
    Manufacturing engineering
    Publication URI
    http://hdl.handle.net/10072/384895
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander