• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills

    Thumbnail
    View/Open
    Hamilton167270.pdf (697.7Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Dutton, Christopher L
    Subalusky, Amanda L
    Hamilton, Stephen K
    Rosi, Emma J
    Post, David M
    Griffith University Author(s)
    Hamilton, Stephen K.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Organic matter and nutrient loading into aquatic ecosystems affects ecosystem structure and function and can result in eutrophication and hypoxia. Hypoxia is often attributed to anthropogenic pollution and is not common in unpolluted rivers. Here we show that organic matter loading from hippopotami causes the repeated occurrence of hypoxia in the Mara River, East Africa. We documented 49 high flow events over 3 years that caused dissolved oxygen decreases, including 13 events resulting in hypoxia, and 9 fish kills over 5 years. Evidence from experiments and modeling demonstrates a strong mechanistic link between the flushing ...
    View more >
    Organic matter and nutrient loading into aquatic ecosystems affects ecosystem structure and function and can result in eutrophication and hypoxia. Hypoxia is often attributed to anthropogenic pollution and is not common in unpolluted rivers. Here we show that organic matter loading from hippopotami causes the repeated occurrence of hypoxia in the Mara River, East Africa. We documented 49 high flow events over 3 years that caused dissolved oxygen decreases, including 13 events resulting in hypoxia, and 9 fish kills over 5 years. Evidence from experiments and modeling demonstrates a strong mechanistic link between the flushing of hippo pools and decreased dissolved oxygen in the river. This phenomenon may have been more widespread throughout Africa before hippopotamus populations were severely reduced. Frequent hypoxia may be a natural part of tropical river ecosystem function, particularly in rivers impacted by large wildlife.
    View less >
    Journal Title
    NATURE COMMUNICATIONS
    Volume
    9
    DOI
    https://doi.org/10.1038/s41467-018-04391-6
    Copyright Statement
    © The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
    Subject
    Environmental sciences
    Publication URI
    http://hdl.handle.net/10072/384944
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander