• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Rainfall Intensification Enhances Deep Percolation and Soil Water Content in Tilled and No-Till Cropping Systems of the US Midwest

    Thumbnail
    View/Open
    Hamilton167266.pdf (1.580Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Hess, Laura JT
    Hinckley, Eve-Lyn S
    Robertson, G Philip
    Hamilton, Stephen K
    Matson, Pamela A
    Griffith University Author(s)
    Hamilton, Stephen K.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Globally, the proportion of total rainfall occurring as extreme events is increasing, which may have consequences for agriculture. In the US Midwest, we conducted a 234-d manipulative experiment in 16 paired plots where we increased the proportion of rain falling in extreme events on tilled and no-till cropping systems. We compared the effects of larger, less frequent rain events (“intensified” rainfall) vs. smaller, more frequent rain events (“normal” rainfall) on soil water content and deep percolation. The effect of intensified rainfall on the volumetric water content (VWC) of soil at the 10-cm depth during the experiment ...
    View more >
    Globally, the proportion of total rainfall occurring as extreme events is increasing, which may have consequences for agriculture. In the US Midwest, we conducted a 234-d manipulative experiment in 16 paired plots where we increased the proportion of rain falling in extreme events on tilled and no-till cropping systems. We compared the effects of larger, less frequent rain events (“intensified” rainfall) vs. smaller, more frequent rain events (“normal” rainfall) on soil water content and deep percolation. The effect of intensified rainfall on the volumetric water content (VWC) of soil at the 10-cm depth during the experiment varied seasonally: in spring, intensified rainfall decreased the average VWC at the 10-cm depth by 0.05 ± 0.01 cm3 cm−3 compared with normal rainfall, but in summer and fall, it had no effect. In soil at the 100-cm depth, VWC declined during the summer in normal but not intensified plots. A surface-added Br− tracer was detected and peaked earlier in soil water at 120 cm under intensified rainfall vs. normal rainfall (by 6 ± 3 and 74 ± 33 d, respectively) regardless of tillage, although it was detected sooner in no-till than tilled systems (by 9 ± 3 d). Also, less Br− was recovered in soil under intensified (8 ± 8% of total Br− added) vs. normal rainfall (21 ± 3%). Our results suggest that rainfall intensification will increase deep percolation and deep soil water content in cropping systems regardless of tillage. Such changes to soil water dynamics may alter plant water and nutrient availability.
    View less >
    Journal Title
    VADOSE ZONE JOURNAL
    Volume
    17
    Issue
    1
    DOI
    https://doi.org/10.2136/vzj2018.07.0128
    Copyright Statement
    © 2018 Soil Science Society of America. This is an open access article distributed under the CC BY-NC-ND license, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Crop and pasture production
    Physical geography and environmental geoscience
    Soil sciences
    Publication URI
    http://hdl.handle.net/10072/384948
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander