Strong-field non-sequential double ionization: wavelength dependence of ion momentum distributions for neon and argon
Author(s)
Alnaser, AS
Comtois, D
Hasan, AT
Villeneuve, DM
Kieffer, J-C
Litvinyuk, IV
Griffith University Author(s)
Year published
2008
Metadata
Show full item recordAbstract
Strong-field double ionization of atoms in a non-sequential regime produces longitudinal ion momentum distributions with a characteristic double-peak structure. At 800 nm laser wavelength in Ne2+ the structure is very pronounced with a well-resolved dip at zero momentum, while for Ar2+ the dip is very shallow, possibly indicating different mechanisms in the two atoms. We investigated the source of this difference by measuring longitudinal momentum distributions of Ne2+ and Ar2+ ions at different laser wavelengths (485, 800, 1313 and 2000 nm) and intensities. The shapes of the experimental momentum distributions for the two ...
View more >Strong-field double ionization of atoms in a non-sequential regime produces longitudinal ion momentum distributions with a characteristic double-peak structure. At 800 nm laser wavelength in Ne2+ the structure is very pronounced with a well-resolved dip at zero momentum, while for Ar2+ the dip is very shallow, possibly indicating different mechanisms in the two atoms. We investigated the source of this difference by measuring longitudinal momentum distributions of Ne2+ and Ar2+ ions at different laser wavelengths (485, 800, 1313 and 2000 nm) and intensities. The shapes of the experimental momentum distributions for the two atoms exhibit strong dependence on laser wavelength: for both the dip becomes more pronounced at longer wavelengths. At 1300 nm the longitudinal momentum spectrum for Ar2+ is similar to that of Ne2+ at 800 nm. On the other hand, the Ne2+ spectrum measured at 485 nm has the same shape as that of Ar2+ at 800 nm. This observation indicates that the difference between Ne and Ar observed at 800 nm should not be attributed solely to differences in relative electron impact ionization and excitation cross-sections of the two atoms. It is, to a larger extent, due to the interplay between the ponderomotive energy of electron and the ionization potentials of the target atom.
View less >
View more >Strong-field double ionization of atoms in a non-sequential regime produces longitudinal ion momentum distributions with a characteristic double-peak structure. At 800 nm laser wavelength in Ne2+ the structure is very pronounced with a well-resolved dip at zero momentum, while for Ar2+ the dip is very shallow, possibly indicating different mechanisms in the two atoms. We investigated the source of this difference by measuring longitudinal momentum distributions of Ne2+ and Ar2+ ions at different laser wavelengths (485, 800, 1313 and 2000 nm) and intensities. The shapes of the experimental momentum distributions for the two atoms exhibit strong dependence on laser wavelength: for both the dip becomes more pronounced at longer wavelengths. At 1300 nm the longitudinal momentum spectrum for Ar2+ is similar to that of Ne2+ at 800 nm. On the other hand, the Ne2+ spectrum measured at 485 nm has the same shape as that of Ar2+ at 800 nm. This observation indicates that the difference between Ne and Ar observed at 800 nm should not be attributed solely to differences in relative electron impact ionization and excitation cross-sections of the two atoms. It is, to a larger extent, due to the interplay between the ponderomotive energy of electron and the ionization potentials of the target atom.
View less >
Journal Title
Journal of Physics B - Atomic, Molecular and Optical Physics
Volume
41
Issue
3
Subject
Atomic and molecular physics
Atomic, molecular and optical physics
Theoretical and computational chemistry