• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Strong-field non-sequential double ionization: wavelength dependence of ion momentum distributions for neon and argon

    Author(s)
    Alnaser, AS
    Comtois, D
    Hasan, AT
    Villeneuve, DM
    Kieffer, J-C
    Litvinyuk, IV
    Griffith University Author(s)
    Litvinyuk, Igor
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Strong-field double ionization of atoms in a non-sequential regime produces longitudinal ion momentum distributions with a characteristic double-peak structure. At 800 nm laser wavelength in Ne2+ the structure is very pronounced with a well-resolved dip at zero momentum, while for Ar2+ the dip is very shallow, possibly indicating different mechanisms in the two atoms. We investigated the source of this difference by measuring longitudinal momentum distributions of Ne2+ and Ar2+ ions at different laser wavelengths (485, 800, 1313 and 2000 nm) and intensities. The shapes of the experimental momentum distributions for the two ...
    View more >
    Strong-field double ionization of atoms in a non-sequential regime produces longitudinal ion momentum distributions with a characteristic double-peak structure. At 800 nm laser wavelength in Ne2+ the structure is very pronounced with a well-resolved dip at zero momentum, while for Ar2+ the dip is very shallow, possibly indicating different mechanisms in the two atoms. We investigated the source of this difference by measuring longitudinal momentum distributions of Ne2+ and Ar2+ ions at different laser wavelengths (485, 800, 1313 and 2000 nm) and intensities. The shapes of the experimental momentum distributions for the two atoms exhibit strong dependence on laser wavelength: for both the dip becomes more pronounced at longer wavelengths. At 1300 nm the longitudinal momentum spectrum for Ar2+ is similar to that of Ne2+ at 800 nm. On the other hand, the Ne2+ spectrum measured at 485 nm has the same shape as that of Ar2+ at 800 nm. This observation indicates that the difference between Ne and Ar observed at 800 nm should not be attributed solely to differences in relative electron impact ionization and excitation cross-sections of the two atoms. It is, to a larger extent, due to the interplay between the ponderomotive energy of electron and the ionization potentials of the target atom.
    View less >
    Journal Title
    Journal of Physics B - Atomic, Molecular and Optical Physics
    Volume
    41
    Issue
    3
    DOI
    https://doi.org/10.1088/0953-4075/41/3/031001
    Subject
    Atomic and Molecular Physics
    Atomic, Molecular, Nuclear, Particle and Plasma Physics
    Optical Physics
    Theoretical and Computational Chemistry
    Publication URI
    http://hdl.handle.net/10072/38497
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander