• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Size and electron density of open-air plasmas diagnosed by optical imaging

    Author(s)
    Feng, BW
    Zhong, XX
    Zhang, Q
    Chen, F
    Sheng, ZM
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    A method for accurate measurements of the size and electron density of open-air plasmas by optical imaging is developed. The plasma size is determined by the intensified charge coupled device (ICCD) imaging and is related to the plasma inductance. The plasma density is then derived from the plasma inductance in open air. The electron densities measured by the ICCD imaging agree well with the reliable Stark broadening method, in stark contrast with the commonly used current–voltage I–method. These shortcomings of the I– method arise because of its heavy reliance on electron mobility values which are uncertain in complex gas ...
    View more >
    A method for accurate measurements of the size and electron density of open-air plasmas by optical imaging is developed. The plasma size is determined by the intensified charge coupled device (ICCD) imaging and is related to the plasma inductance. The plasma density is then derived from the plasma inductance in open air. The electron densities measured by the ICCD imaging agree well with the reliable Stark broadening method, in stark contrast with the commonly used current–voltage I–method. These shortcomings of the I– method arise because of its heavy reliance on electron mobility values which are uncertain in complex gas mixtures such as air. This work thus presents a new way of using the ICCD imaging to determine the plasma size and electron density and as such contributes to the development of next-generation plasma diagnostic methods.
    View less >
    Journal Title
    JOURNAL OF PHYSICS D-APPLIED PHYSICS
    Volume
    52
    Issue
    26
    DOI
    https://doi.org/10.1088/1361-6463/ab15cc
    Subject
    Physical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/385020
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander