• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction

    Author(s)
    Si, Jincheng
    Zheng, Qiang
    Chen, Hanlin
    Lei, Chaojun
    Suo, Yange
    Yang, Bin
    Zhang, Zhiguo
    Li, Zhongjian
    Lei, Lecheng
    Hou, Yang
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Kostya (Ken)
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Two-dimensional (2D) niobium disulfide (NbS2) materials feature unique physical and chemical properties leading to highly promising energy conversion applications. Herein, we developed a robust synthesis technique consisting of electrochemical exfoliation under alternating currents and subsequent liquid-phase exfoliation to prepare highly uniform few-layer NbS2 nanosheets. The obtained few-layer NbS2 material has a 2D nanosheet structure with an ultrathin thickness of ∼3 nm and a lateral size of ∼2 μm. Benefiting from their unique 2D structure and highly exposed active sites, the few-layer NbS2 nanosheets drop-casted on ...
    View more >
    Two-dimensional (2D) niobium disulfide (NbS2) materials feature unique physical and chemical properties leading to highly promising energy conversion applications. Herein, we developed a robust synthesis technique consisting of electrochemical exfoliation under alternating currents and subsequent liquid-phase exfoliation to prepare highly uniform few-layer NbS2 nanosheets. The obtained few-layer NbS2 material has a 2D nanosheet structure with an ultrathin thickness of ∼3 nm and a lateral size of ∼2 μm. Benefiting from their unique 2D structure and highly exposed active sites, the few-layer NbS2 nanosheets drop-casted on carbon paper exhibited excellent catalytic activity for the hydrogen evolution reaction (HER) in acid with an overpotential of 90 mV at a current density of 10 mA cm–2 and a low Tafel slope of 83 mV dec–1, which are superior to those reported for other NbS2-based HER electrocatalysts. Furthermore, few-layer NbS2 nanosheets are effective as bifunctional electrocatalysts for hydrogen production by overall water splitting, where the urea and hydrazine oxidation reactions replace the oxygen evolution reaction.
    View less >
    Journal Title
    ACS APPLIED MATERIALS & INTERFACES
    Volume
    11
    Issue
    14
    DOI
    https://doi.org/10.1021/acsami.8b22052
    Subject
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/385151
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander