• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Innovative antigen carrier system for the development of tuberculosis vaccines

    Author(s)
    Chen, S
    Sandford, S
    Kirman, JR
    Rehm, BHA
    Griffith University Author(s)
    Rehm, Bernd
    Chen, Shuxiong
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    A major obstacle to tuberculosis (TB)-subunit-vaccine development has been the induction of inadequate levels of protective immunity due to the limited breadth of antigen in vaccine preparations. In this study, immunogenic mycobacterial fusion peptides Ag85B-TB10.4 and Ag85B-TB10.4-Rv2660c were covalently displayed on the surface of self-assembled polyester particles. This study investigated whether polyester particles displaying mycobacterial antigens could provide augmented immunogenicity (i.e., offer an innovative vaccine formulation) when compared with free soluble antigens. Herein, polyester particle-based particulate ...
    View more >
    A major obstacle to tuberculosis (TB)-subunit-vaccine development has been the induction of inadequate levels of protective immunity due to the limited breadth of antigen in vaccine preparations. In this study, immunogenic mycobacterial fusion peptides Ag85B-TB10.4 and Ag85B-TB10.4-Rv2660c were covalently displayed on the surface of self-assembled polyester particles. This study investigated whether polyester particles displaying mycobacterial antigens could provide augmented immunogenicity (i.e., offer an innovative vaccine formulation) when compared with free soluble antigens. Herein, polyester particle-based particulate vaccines were produced in an endotoxin-free Escherichia coli strain and emulsified with the adjuvant dimethyl dioctadecyl ammonium bromide. C57BL/6 mice were used to study the immunogenicity of formulated particulate vaccines. The result of humoral immunity showed the antibodies only interacted with target antigens and not with PhaC and the background proteins of the production host. The analysis of T helper 1 cellular immunity indicated that a relatively strong production of cellular immunity biomarkers, IFN-γ and IL-17A cytokines, was induced by particulate vaccines when compared with the respective soluble controls. This study demonstrated that polyester particles have the potential to perform as a mycobacterial antigen-delivery agent to induce augmented antigen-specific immune responses in contrast to free soluble vaccines.-Chen, S., Sandford, S., Kirman, J. R., Rehm, B. H. A. Innovative antigen carrier system for the development of tuberculosis vaccines.
    View less >
    Journal Title
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology
    Volume
    33
    Issue
    6
    DOI
    https://doi.org/10.1096/fj.201802501RR
    Subject
    Biochemistry and cell biology
    Zoology
    Medical physiology
    Publication URI
    http://hdl.handle.net/10072/385157
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander