• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Structure and photoluminescence properties of MoO3-x/graphene nanoflake hybrid nanomaterials formed via surface growth

    Author(s)
    Wang, BB
    Zhong, XX
    Ming, BM
    Zhu, MK
    Chen, YA
    Cvelbar, U
    Ostrikov, K
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    An unconventional method based on hot filament chemical vapor deposition system is used to fabricate MoO3−x/graphene nanoflake hybrid structures via surface growth. MoO3 precursor is firstly reduced to MoO3−x nanoparticles mediated by N2 molecules excited by electrons emission from hot tungsten filaments. Graphene nanoflakes are then grown on the MoO3−x nanoparticles in a high-flow-rate CH4 environment through the surface conversion of hydrocarbon radicals to benzene. The results indicate that the MoO3−x nanoparticles are mainly composed of Mo4O11 and MoO2 phases and they are covered by the graphene nanoflakes formed via ...
    View more >
    An unconventional method based on hot filament chemical vapor deposition system is used to fabricate MoO3−x/graphene nanoflake hybrid structures via surface growth. MoO3 precursor is firstly reduced to MoO3−x nanoparticles mediated by N2 molecules excited by electrons emission from hot tungsten filaments. Graphene nanoflakes are then grown on the MoO3−x nanoparticles in a high-flow-rate CH4 environment through the surface conversion of hydrocarbon radicals to benzene. The results indicate that the MoO3−x nanoparticles are mainly composed of Mo4O11 and MoO2 phases and they are covered by the graphene nanoflakes formed via surface growth. This new hybrid structure emits the ultraviolet, blue, green, red and infrared light and the photoluminescence of MoO3−x nanoparticles is quenched by the graphene nanoflakes. The generation of prevailing photoluminescence bands is interpreted by the three mechanisms including the near band edge emission, the transition between two bands and the inter-valence charge transfer transition, which indicates that the intermediate band formed within the bandgap by electrons from oxygen vacancies may cause the emission. The observed photoluminescence quenching of MoO3−x nanoparticles originates from the transfer of electrons from MoO3−x nanoparticles to graphene nanoflakes under electric field formed in the MoO3−x/graphene nanoflake interface. These results not only provide further insights into the rich surface properties of graphene/molybdenum oxide hybrid structures but also contribute to the design and synthesis of new materials and the development of next-generation graphene-based optoelectronic and photovoltaic devices.
    View less >
    Journal Title
    APPLIED SURFACE SCIENCE
    Volume
    480
    DOI
    https://doi.org/10.1016/j.apsusc.2019.02.183
    Subject
    Nanomaterials
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/385170
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander