• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Low-flammable electrolytes with fluoroethylene carbonate based solvent mixtures and lithium bis(trifluoromethanesulfonyl)imide for lithium-ion batteries

    Author(s)
    Wang, Z
    Hofmann, A
    Hanemann, T
    Griffith University Author(s)
    Hofmann, Andreas
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Here we report a series of electrolyte mixtures containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and fluoroethylene carbonate (FEC) based solvents for improving the flame-resistance of electrolyte solvents compared to state-of-art carbonate based electrolytes. Physical, rheological and conductive properties of the different mixtures are measured. These results give insight into the interaction of the ions and molecules such as ionic dissociation, solvation and diffusion. Aluminum anodic dissolution caused by the conducting salt is studied in Li||Al cells. This corrosion effect could be successfully removed using ...
    View more >
    Here we report a series of electrolyte mixtures containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and fluoroethylene carbonate (FEC) based solvents for improving the flame-resistance of electrolyte solvents compared to state-of-art carbonate based electrolytes. Physical, rheological and conductive properties of the different mixtures are measured. These results give insight into the interaction of the ions and molecules such as ionic dissociation, solvation and diffusion. Aluminum anodic dissolution caused by the conducting salt is studied in Li||Al cells. This corrosion effect could be successfully removed using the additive lithium bis(oxalato)borate. The electrochemical performances in half cell (Li||NMC) and full cell (C||NMC, in form of coin and pouch-bag) are demonstrated and the cycling ageing of the electrolytes as well as the growth of the resistive interface layers are reflected by impedance measurements on the cycles. These results are related to the ion transport in solution. To achieve a balance of the various properties necessary for the battery performances, a low-flammable electrolyte is chosen as a promising alternative in case of the safety and capacity retention improvement.
    View less >
    Journal Title
    Electrochimica Acta
    Volume
    298
    DOI
    https://doi.org/10.1016/j.electacta.2018.12.117
    Subject
    Physical sciences
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/385180
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander