• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Deep Residual Learning for Analyzing Customer Satisfaction using Video Surveillance

    Thumbnail
    View/Open
    Tjondronegoro224515Accepted.pdf (352.0Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Sugianto, N
    Tjondronegoro, D
    Tydd, B
    Griffith University Author(s)
    Tjondronegoro, Dian W.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Measuring customer satisfaction based on facial expressions from video surveillance can potentially support real-time analysis. We propose the use of deep residual network (ResNet), which has been a widely used for many image recognition tasks, but not in the context of recognizing facial expressions in video surveillance. A key challenge in collecting video surveillance data in an airport context is to achieve a balanced distribution of all emotions, as most of passengers' faces are either neutral or happy. To solve this issue, there is no existing work that has established the feasibility of using datasets from different ...
    View more >
    Measuring customer satisfaction based on facial expressions from video surveillance can potentially support real-time analysis. We propose the use of deep residual network (ResNet), which has been a widely used for many image recognition tasks, but not in the context of recognizing facial expressions in video surveillance. A key challenge in collecting video surveillance data in an airport context is to achieve a balanced distribution of all emotions, as most of passengers' faces are either neutral or happy. To solve this issue, there is no existing work that has established the feasibility of using datasets from different domains to train the model. This paper is the first in investigating the benefits of using residual training approach and adopt a pre-trained network from similar tasks to reduce training time. Based on comprehensive experiments, which compare domain-specific, cross-domain and mixed domain training and testing approaches, we confirm the value of augmenting datasets from different domains (CK+, JAFFE, AffectNet) for the surveillance domain.
    View less >
    Conference Title
    Proceedings of AVSS 2018 - 2018 15th IEEE International Conference on Advanced Video and Signal-Based Surveillance
    DOI
    https://doi.org/10.1109/AVSS.2018.8639478
    Copyright Statement
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Marketing
    Publication URI
    http://hdl.handle.net/10072/385236
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander