• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Guided ionization waves: The physics of repeatability

    Thumbnail
    View/Open
    Ostrikov201481.pdf (654.4Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Lu, XinPei
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Guided ionization waves, or plasma streamers, are increasingly important for many applications in spanning materials processing and biomedicine. The highly reproducible, repeatable behavior of the most puzzling kind of the streamers–plasma bullets is highly attractive as it promises a high degree of control in many applications. However, despite a dozen years since the discovery of this phenomenon, the exact reasons for such behavior still remain essentially unclear. To understand the dynamics of the guided ionization wave (plasma bullet), a large number of works have been carried out and many interesting results have been ...
    View more >
    Guided ionization waves, or plasma streamers, are increasingly important for many applications in spanning materials processing and biomedicine. The highly reproducible, repeatable behavior of the most puzzling kind of the streamers–plasma bullets is highly attractive as it promises a high degree of control in many applications. However, despite a dozen years since the discovery of this phenomenon, the exact reasons for such behavior still remain essentially unclear. To understand the dynamics of the guided ionization wave (plasma bullet), a large number of works have been carried out and many interesting results have been reported. Here, we critically examine the available results and generalize the physical mechanisms of the guided ionization waves, which are of particular interest to practical applications of atmospheric-pressure plasma discharges, in general. The critical examination of the fundamental principles will show that, in order to propagate in a repeatable-mode, the plasma bullet must propagate in a channel with a high seed electron density (HSED), which is on the order of 109 cm−3. This review concludes that to distinguish guided ionization waves from traditional positive streamer discharges, it is most appropriate to describe an atmospheric-pressure discharge featuring a plasma bullet behavior as an HSED discharge. When the HSED condition is met, the dynamics of a plasma plume appears to be repeatable. On the contrary, it propagates in an unrepeatable mode and emerges more like a positive streamer discharge when the HSED condition is not satisfied. According to this theory, the transition of the propagation mode of the plasma bullet between the repeatable mode and the stochastic mode can be well explained. Besides by controlling the seed electron density around the transition region between the HSED discharge and the traditional positive streamer, this knowledge will help in better understanding of the positive streamer discharges in air, in cases relevant to practical applications of such plasma discharges in materials processing technologies, industrial chemistry, nanotechnology, and health care.
    View less >
    Journal Title
    APPLIED PHYSICS REVIEWS
    Volume
    5
    Issue
    3
    DOI
    https://doi.org/10.1063/1.5031445
    Copyright Statement
    © 2018 Australian Institute of Physics. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this journal please refer to the publisher’s website or contact the author(s).
    Subject
    Condensed matter physics
    Macromolecular and materials chemistry
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/385272
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander