• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Tuning the Amount of Oxygen Vacancies in Sputter-Deposited SnOx films for Enhancing the Performance of Perovskite Solar Cells

    Author(s)
    Ali, Fawad
    Ngoc, Duy Pham
    Bradford, H Jonathan
    Khoshsirat, Nima
    Ostrikov, Ken
    Bell, John M
    Wang, Hongxia
    Tesfamichael, Tuquabo
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    This work demonstrates the effect of oxygen vacancies in SnOx thin films on the performance of perovskite solar cells. Various SnOx films with different amounts of oxygen vacancies were deposited by sputtering at different substrate temperatures (25–300 °C). The transmittance of the films decreased from 82 to 66 % with increasing deposition temperature from 25 to 300 °C. Both X‐ray photoelectron spectroscopy and electron‐spin resonance spectroscopy confirmed that a higher density of oxygen vacancies was created within the SnOx film at a high substrate temperature, which caused narrowing of the SnOx bandgap from 4.1 (25 °C) ...
    View more >
    This work demonstrates the effect of oxygen vacancies in SnOx thin films on the performance of perovskite solar cells. Various SnOx films with different amounts of oxygen vacancies were deposited by sputtering at different substrate temperatures (25–300 °C). The transmittance of the films decreased from 82 to 66 % with increasing deposition temperature from 25 to 300 °C. Both X‐ray photoelectron spectroscopy and electron‐spin resonance spectroscopy confirmed that a higher density of oxygen vacancies was created within the SnOx film at a high substrate temperature, which caused narrowing of the SnOx bandgap from 4.1 (25 °C) to 3.74 eV (250 °C). Combined ultraviolet photoelectron spectroscopy and UV/Vis spectroscopy showed an excellent conduction band position alignment between the methylammonium lead iodide perovskite layer (3.90 eV) and the SnOx electron transport layer deposited at 250 °C (3.92 eV). As a result, a significant enhancement of the open‐circuit voltage from 0.82 to 1.0 V was achieved, resulting in an increase of the power conversion efficiency of the perovskite solar cells from 11 to 14 %. This research demonstrated a facile approach for controlling the amount of oxygen vacancies in SnOx thin films to achieve a desirable energy alignment with the perovskite absorber layer for enhanced device performance.
    View less >
    Journal Title
    CHEMSUSCHEM
    Volume
    11
    Issue
    18
    DOI
    https://doi.org/10.1002/cssc.201801541
    Subject
    Analytical chemistry
    Other chemical sciences
    Chemical engineering
    Publication URI
    http://hdl.handle.net/10072/385318
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander