• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy

    Thumbnail
    View/Open
    OSTRIKOV201454.pdf (2.190Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Zhang, Xiumei
    Nan, Haiyan
    Xiao, Shaoqing
    Wan, Xi
    Gu, Xiaofeng
    Du, Aijun
    Ni, Zhenhua
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Epitaxial growth of atomically thin two-dimensional crystals such as transition metal dichalcogenides remains challenging, especially for producing large-size transition metal dichalcogenides bilayer crystals featuring high density of states, carrier mobility and stability at room temperature. Here we achieve in epitaxial growth of the second monolayer from the first monolayer by reverse-flow chemical vapor epitaxy and produce high-quality, large-size transition metal dichalcogenides bilayer crystals with high yield, control, and reliability. Customized temperature profiles and reverse gas flow help activate the first layer ...
    View more >
    Epitaxial growth of atomically thin two-dimensional crystals such as transition metal dichalcogenides remains challenging, especially for producing large-size transition metal dichalcogenides bilayer crystals featuring high density of states, carrier mobility and stability at room temperature. Here we achieve in epitaxial growth of the second monolayer from the first monolayer by reverse-flow chemical vapor epitaxy and produce high-quality, large-size transition metal dichalcogenides bilayer crystals with high yield, control, and reliability. Customized temperature profiles and reverse gas flow help activate the first layer without introducing new nucleation centers leading to near-defect-free epitaxial growth of the second layer from the existing nucleation centers. A series of bilayer crystals including MoS2 and WS2, ternary Mo1−xWxS2 and quaternary Mo1−xWxS2(1−y)Se2y are synthesized with variable structural configurations and tunable electronic and optical properties. The robust, potentially universal approach for the synthesis of large-size transition metal dichalcogenides bilayer single crystals is highly-promising for fundamental studies and technological applications.
    View less >
    Journal Title
    NATURE COMMUNICATIONS
    Volume
    10
    DOI
    https://doi.org/10.1038/s41467-019-08468-8
    Copyright Statement
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    Subject
    Nanomaterials
    Publication URI
    http://hdl.handle.net/10072/385322
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander