• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution

    Author(s)
    Chu, Sijun
    Chen, Wei
    Chen, Guangliang
    Huang, Jun
    Zhang, Rui
    Song, Changsheng
    Wang, Xingquan
    Li, Chaorong
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Hydrogen, generated by electrocatalytic process, is one of the most promising sources of green and sustainable energy. Herein, we report a novel elctrocatalyst for hydrogen evolution reaction (HER) fabricated by doping Ni foam (NF) supported Ni2P nanosheets with Cu atoms. The Cu atoms effectively tune the structure and physicochemical properties of Ni2P, leading to the lower HER free energy, improved electrical conductivity, and high exposure of surface active sites. The optimized Ni1.8Cu0.2-P displays an excellent catalytic performance and stability, which is demonstrated by the low overpotentials of 78 (Tafel slope: 70 mV ...
    View more >
    Hydrogen, generated by electrocatalytic process, is one of the most promising sources of green and sustainable energy. Herein, we report a novel elctrocatalyst for hydrogen evolution reaction (HER) fabricated by doping Ni foam (NF) supported Ni2P nanosheets with Cu atoms. The Cu atoms effectively tune the structure and physicochemical properties of Ni2P, leading to the lower HER free energy, improved electrical conductivity, and high exposure of surface active sites. The optimized Ni1.8Cu0.2-P displays an excellent catalytic performance and stability, which is demonstrated by the low overpotentials of 78 (Tafel slope: 70 mV dec-1) and 245 mV to reach a current density of 10 and 100 mA cm-2 for the HER in 1.0 M KOH. The high electrocatalytic activity of Ni1.8Cu0.2-P is attributed to the increased Fermi level and the exposed active crystal plane (201). The H2 amount produced with a current density of 10 mA cm-2 is about 1.91 mmol h-1 cm-2, which is the highest value among the reported non-precious metal catalysts.
    View less >
    Journal Title
    APPLIED CATALYSIS B-ENVIRONMENTAL
    Volume
    243
    DOI
    https://doi.org/10.1016/j.apcatb.2018.10.063
    Subject
    Physical chemistry
    Chemical engineering
    Environmental engineering
    Publication URI
    http://hdl.handle.net/10072/385372
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander