• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: A first-principles study

    Author(s)
    Roknuzzaman, Md
    Ostrikov, Kostya Ken
    Wasalathilake, Kimal Chandula
    Yan, Cheng
    Wang, Hongxia
    Tesfamichael, Tuquabo
    Griffith University Author(s)
    Ostrikov, Kostya (Ken)
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Semiconducting lead (Pb) free organic-inorganic hybrid perovskites have become more attractive for possible applications in solar cells and other optoelectronic devices. In this study, a first-principles density functional theory (DFT) calculations have been carried out to explore the structural, electronic, optical and mechanical properties of Pb-free organic-inorganic hybrid perovskites MABX3 (MA = CH3NH3, B = Sn, Ge; X = I, Br, Cl) and the results are compared with the Pb-containing perovskites MAPbX3 (X = I, Br, Cl). High absorption, low reflectivity and high optical conductivity have been observed in our simulations. ...
    View more >
    Semiconducting lead (Pb) free organic-inorganic hybrid perovskites have become more attractive for possible applications in solar cells and other optoelectronic devices. In this study, a first-principles density functional theory (DFT) calculations have been carried out to explore the structural, electronic, optical and mechanical properties of Pb-free organic-inorganic hybrid perovskites MABX3 (MA = CH3NH3, B = Sn, Ge; X = I, Br, Cl) and the results are compared with the Pb-containing perovskites MAPbX3 (X = I, Br, Cl). High absorption, low reflectivity and high optical conductivity have been observed in our simulations. These compounds are found to be direct band gap semiconductors suitable for solar cells and other optoelectronic devices. Our calculation indicates that tin (Sn) has superior properties alternative to Pb as the Sn containing compounds have excellent electronic, optical and mechanical properties. MASnI3 is found to be one of the best Pb-free materials embracing these properties. For example, the unique mechanical property of MASnI3 makes the compound flexible and easy to be fabricated into thin films. We believe these results will benefit the development of Pb-free hybrid solar cells as well as other optoelectronic devices.
    View less >
    Journal Title
    ORGANIC ELECTRONICS
    Volume
    59
    DOI
    https://doi.org/10.1016/j.orgel.2018.04.051
    Subject
    Physical Sciences
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/385376
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander