Optimising total entry delay at roundabouts with unbalanced flow: A dynamic strategy for smart metering
Author(s)
Duan, Yuzhou
Qu, Xiaobo
Easa, Said
Yan, Yadan
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Modern roundabouts are widely used at intersections with light traffic, generally providing safety and other advantages. However, large entry delays are often observed at roundabouts with unbalanced flow patterns, even though the entry traffic flow is not high. A metering signal-based strategy is examined to mitigate the above problems. A mathematical optimisation model is formulated firstly with the objective of minimising the total entry delay, subject to the metering signal thresholds. Then a solution algorithm based on VISSIM simulation is developed. Finally, a case study is carried out to testify the feasibility and ...
View more >Modern roundabouts are widely used at intersections with light traffic, generally providing safety and other advantages. However, large entry delays are often observed at roundabouts with unbalanced flow patterns, even though the entry traffic flow is not high. A metering signal-based strategy is examined to mitigate the above problems. A mathematical optimisation model is formulated firstly with the objective of minimising the total entry delay, subject to the metering signal thresholds. Then a solution algorithm based on VISSIM simulation is developed. Finally, a case study is carried out to testify the feasibility and applicability of the proposed model. Extended scenarios analyses under different levels of approach volume, different demand combinations and different proportions of right-turn vehicles (left-side driving) are also conducted. Results show that the methodology can effectively improve the operational performance, and a delay reduction of up to 25.7% can.
View less >
View more >Modern roundabouts are widely used at intersections with light traffic, generally providing safety and other advantages. However, large entry delays are often observed at roundabouts with unbalanced flow patterns, even though the entry traffic flow is not high. A metering signal-based strategy is examined to mitigate the above problems. A mathematical optimisation model is formulated firstly with the objective of minimising the total entry delay, subject to the metering signal thresholds. Then a solution algorithm based on VISSIM simulation is developed. Finally, a case study is carried out to testify the feasibility and applicability of the proposed model. Extended scenarios analyses under different levels of approach volume, different demand combinations and different proportions of right-turn vehicles (left-side driving) are also conducted. Results show that the methodology can effectively improve the operational performance, and a delay reduction of up to 25.7% can.
View less >
Journal Title
IET Intelligent Transport Systems
Volume
13
Issue
3
Subject
Electronics, sensors and digital hardware