Show simple item record

dc.contributor.authorTana, Tana
dc.contributor.authorZhang, Zhanying
dc.contributor.authorBeltramini, Jorge
dc.contributor.authorZhu, Huaiyong
dc.contributor.authorOstrikov, Kostya Ken
dc.contributor.authorBartley, John
dc.contributor.authorDoherty, William
dc.description.abstractThe development of viable biorefinery routes for the valorization of lignocellulosics into usable products remains a challenge. Despite the significant progress in lignin valorization using the lignin-first approach or lignin-stabilization strategy, a number of issues still remain including poor monomer yield with grasses and the use of toxic chemicals and H2 with high pressure. Herein, we report a highly effective oxidation–hydrogenation catalytic process for the complete depolymerization of sugarcane bagasse using Pd/C in the presence of atmospheric pressure O2 and alcohol as a solvent. Under the optimum reaction conditions, 31.7 wt% of ferulic acid (FA) and p-coumaric acid (pCA) derived aromatic esters and 25.8 wt% of other four aromatic monomers were obtained based on the lignin content. In this one step approach, molecular O2 adsorbed on the catalyst surface enhanced the formation of atomic hydrogen by alcohol oxidation, and hence improved the efficiency of the overall reductive depolymerization process. A linear correlation between the pCA content and its corresponding ester was obtained irrespective of the biomass source or whether the lignin is in the native or technical form. Another feature of this process is the separation of methylated mono-sugar derivatives and a cellulose-rich solid fraction that is readily fermentable. A plausible reaction mechanism was hypothesized which indicates that the carbon defect on the surface and the enhanced oxygen content are strongly correlated with the high activity of the Pd/C catalyst.
dc.relation.ispartofjournalGreen Chemistry
dc.subject.fieldofresearchChemical sciences
dc.titleValorization of native sugarcane bagasse lignin to bio-aromatic esters/monomers via a one pot oxidation-hydrogenation process
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.hasfulltextNo Full Text
gro.griffith.authorOstrikov, Ken

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record