• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enhanced fluoride removal by hierarchically porous carbon foam monolith with high loading of UiO-66

    Author(s)
    Xie, D
    Gu, Y
    Wang, H
    Wang, Y
    Qin, W
    Wang, G
    Zhang, H
    Zhang, Y
    Griffith University Author(s)
    Zhang, Haimin
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Environmental concern associated with excess fluoride has intrigued the unceasing exploration of new multifunctional hybrid materials to mitigate any undesirable consequence to human health. Herein, a novel hybrid monolith has been successfully fabricated via a facile in-situ growth strategy for highly efficient defluoridation from contaminated waters, in which homogeneously dispersed UiO-66 particles are perfectly anchored on three dimensional (3D) porous carbon foam (CF). Benefiting from fully exposed active sites, excellent pore accessibility and efficient mass transport, the integrated UiO-66/CF hybrid monolith exhibits ...
    View more >
    Environmental concern associated with excess fluoride has intrigued the unceasing exploration of new multifunctional hybrid materials to mitigate any undesirable consequence to human health. Herein, a novel hybrid monolith has been successfully fabricated via a facile in-situ growth strategy for highly efficient defluoridation from contaminated waters, in which homogeneously dispersed UiO-66 particles are perfectly anchored on three dimensional (3D) porous carbon foam (CF). Benefiting from fully exposed active sites, excellent pore accessibility and efficient mass transport, the integrated UiO-66/CF hybrid monolith exhibits fast adsorption kinetics, and outstanding uptake capacity toward fluoride as high as 295 mg g−1, which greatly outperforms the previously reported adsorbents. Furthermore, the fluoride removal efficiency of the spent monolith can reach up to 70% after four cycles, accompanied by facile separation nature and outstanding water stability. More significantly, the resulting UiO-66/CF packed column (0.36 g) can continuously treat 400 mL of F− solution with 6.2 mg L−1 before the breakthrough point occurs, highlight its potential feasibility for fluoride removal in the practical applicability.
    View less >
    Journal Title
    Journal of Colloid and Interface Science
    Volume
    542
    DOI
    https://doi.org/10.1016/j.jcis.2019.02.027
    Subject
    Physical sciences
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/385490
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander