• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Cross-linked trimetallic nanopetals for electrocatalytic water splitting

    Author(s)
    Qu, Shanqing
    Chen, Wei
    Yu, Jinsong
    Chen, Guangliang
    Zhang, Rui
    Chu, Sijun
    Huang, Jun
    Wang, Xingquan
    Li, Chaorong
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Kostya (Ken)
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    A facile and effective approach for fabricating a 3D nanostructured catalyst based on nonprecious metals for water splitting is reported. The Ni-Fe foam (NFF) is pretreated by a dielectric barrier discharge (DBD) plasma under ambient conditions, resulting in numerous microtrenches on the NFF surface. Meanwhile, some NiO and Fe2O3 spots appear on the NFF foam upon exposure to hot filaments generated in DBD plasmas in air. Cross-linked 3D CoS/Ni3S2-FeS nanopetals emerge on plasma treated NFF surface (PNFF) through sulfurization of Co nanosheets electrodeposited on PNFF. The produced CoS/Ni3S2-FeS/PNFF nanocomposite exhibited ...
    View more >
    A facile and effective approach for fabricating a 3D nanostructured catalyst based on nonprecious metals for water splitting is reported. The Ni-Fe foam (NFF) is pretreated by a dielectric barrier discharge (DBD) plasma under ambient conditions, resulting in numerous microtrenches on the NFF surface. Meanwhile, some NiO and Fe2O3 spots appear on the NFF foam upon exposure to hot filaments generated in DBD plasmas in air. Cross-linked 3D CoS/Ni3S2-FeS nanopetals emerge on plasma treated NFF surface (PNFF) through sulfurization of Co nanosheets electrodeposited on PNFF. The produced CoS/Ni3S2-FeS/PNFF nanocomposite exhibited high electrocatalytic activity and stability for the overall water splitting. Benefiting from the 3D hierarchical nanoarchitecture of CoS/Ni3S2-FeS/PNFF with a large surface area, fast electron transport, and low free energy for adsorption, a current density of 10 mA cm−2 is achieved for the HER and OER with ultralow overpotentials of 75 mV and 136 mV, respectively. The amounts of H2 and O2 produced at a normalized current density of 10 mA cm−2 in 1 M KOH are about 680 μmol h−1 and 1230 μmol h−1, respectively. These values are very competitive compared with the state-of-the-art results reported for noble metal-free electrodes in alkaline media.
    View less >
    Journal Title
    JOURNAL OF POWER SOURCES
    Volume
    390
    DOI
    https://doi.org/10.1016/j.jpowsour.2018.04.061
    Subject
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/385536
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander