• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Robust Fabrication of Quantum Dots on Few-Layer MoS2 by Soft Hydrogen Plasma and Post-Annealing

    Author(s)
    Cai, Di
    Xiao, Shaoqing
    Nan, Haiyan
    Gu, Xiaofeng
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Apart from unique properties of layered transition‐metal dichalcogenide nanosheets like MoS2, quantum dots (QDs) from these layered materials promise novel science and applications due to their quantum confinement effect. However, the reported fabrication techniques for such QDs all involve the use of liquid organic solvents and the final material extraction from such liquid dispersions. Here a novel and convenient dry method for the synthesis of MoS2 quantum dots interspersed on few‐layer MoS2 using soft hydrogen plasma treatment followed by post‐annealing is demonstrated. The size of MoS2 nanodots can be well controlled ...
    View more >
    Apart from unique properties of layered transition‐metal dichalcogenide nanosheets like MoS2, quantum dots (QDs) from these layered materials promise novel science and applications due to their quantum confinement effect. However, the reported fabrication techniques for such QDs all involve the use of liquid organic solvents and the final material extraction from such liquid dispersions. Here a novel and convenient dry method for the synthesis of MoS2 quantum dots interspersed on few‐layer MoS2 using soft hydrogen plasma treatment followed by post‐annealing is demonstrated. The size of MoS2 nanodots can be well controlled by adjusting the working pressure of hydrogen plasma and post‐thermal annealing. This method relies on the cumulative hydrogen ion bombardment effect which can destroy the hexagonal structure of the top MoS2 layer and disintegrate the top layer into MoS2 nanodots and even QDs. Post‐thermal annealing can further reduce the size. Such MoS2 quantum dots interspersed on few‐layer MoS2 exhibit two new photoluminescence peaks at around 575 nm because of the quantum confinement effect. This dry method is versatile, scalable, and compatible with the semiconductor manufacturing processes, and can be extended to other layered materials for applications in hydrogen evolution reaction, catalysis, and energy devices.
    View less >
    Journal Title
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
    Volume
    35
    Issue
    6
    DOI
    https://doi.org/10.1002/ppsc.201800060
    Subject
    Other physical sciences
    Chemical engineering
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/385538
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander