• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ozone disinfection of chlorine-resistant bacteria in drinking water

    Author(s)
    Ding, Wanqing
    Jin, Wenbiao
    Cao, Song
    Zhou, Xu
    Wang, Changping
    Jiang, Qijun
    Huang, Hui
    Tu, Renjie
    Han, Song-Fang
    Wang, Qilin
    Griffith University Author(s)
    Wang, Qilin
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    The wide application of chlorine disinfectant for drinking water treatment has led to the appearance of chlorine-resistant bacteria, which pose a severe threat to public health. This study was performed to explore the physiological-biochemical characteristics and environmental influence (pH, temperature, and turbidity)of seven strains of chlorine-resistant bacteria isolated from drinking water. Ozone disinfection was used to investigate the inactivation effect of bacteria and spores. The DNA concentration and cell surface structure variations of typical chlorine-resistant spores (Bacillus cereus spores)were also analysed by ...
    View more >
    The wide application of chlorine disinfectant for drinking water treatment has led to the appearance of chlorine-resistant bacteria, which pose a severe threat to public health. This study was performed to explore the physiological-biochemical characteristics and environmental influence (pH, temperature, and turbidity)of seven strains of chlorine-resistant bacteria isolated from drinking water. Ozone disinfection was used to investigate the inactivation effect of bacteria and spores. The DNA concentration and cell surface structure variations of typical chlorine-resistant spores (Bacillus cereus spores)were also analysed by real-time qPCR, flow cytometry, and scanning electron microscopy to determine their inactivation mechanisms. The ozone resistance of bacteria (Aeromonas jandaei < Vogesella perlucida < Pelomonas < Bacillus cereus < Aeromonas sobria)was lower than that of spores (Bacillus alvei < Lysinibacillus fusiformis < Bacillus cereus)at an ozone concentration of 1.5 mg/L. More than 99.9% of Bacillus cereus spores were inactivated by increasing ozone concentration and treatment duration. Moreover, the DNA content of Bacillus cereus spores decreased sharply, but approximately 1/4 of the target genes remained. The spore structure exhibited shrinkage and folding after ozone treatment. Both cell structures and gene fragments were damaged by ozone disinfection. These results showed that ozone disinfection is a promising method for inactivating chlorine-resistant bacteria and spores in drinking water.
    View less >
    Journal Title
    Water Research
    Volume
    160
    DOI
    https://doi.org/10.1016/j.watres.2019.05.014
    Subject
    Multidisciplinary
    Publication URI
    http://hdl.handle.net/10072/385623
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander