Mechanisms of free nitrous acid and freezing co-pretreatment enhancing short-chain fatty acids production from waste activated sludge anaerobic fermentation
Author(s)
Wu, Yuqi
Song, Kang
Sun, Xiaoyan
Ngo, HuuHao
Guo, Wenshan
Nghiem, Long D
Wang, Qilin
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Free nitrous acid (FNA) or freezing has been recently utilized as an efficient pretreatment method to increase short-chain fatty acids (SCFAs) yield from waste activated sludge (WAS) anaerobic fermentation (AF). But until now, the performances and mechanisms of the co-pretreatment for SCFAs production are unknown. This research aimed to investigate the AF mechanisms through studying its influence on sludge solubilization and related bioprocesses. WAS was pretreated for 48 h with FNA (1.07 mg N/L), freezing (−5 °C) and combination of FNA and freezing (0.53–2.13 mg N/L FNA at −5 °C), respectively, then conducted batch AF. ...
View more >Free nitrous acid (FNA) or freezing has been recently utilized as an efficient pretreatment method to increase short-chain fatty acids (SCFAs) yield from waste activated sludge (WAS) anaerobic fermentation (AF). But until now, the performances and mechanisms of the co-pretreatment for SCFAs production are unknown. This research aimed to investigate the AF mechanisms through studying its influence on sludge solubilization and related bioprocesses. WAS was pretreated for 48 h with FNA (1.07 mg N/L), freezing (−5 °C) and combination of FNA and freezing (0.53–2.13 mg N/L FNA at −5 °C), respectively, then conducted batch AF. Experimental results indicated that the optimal total SCFAs yield of 391.19 ± 5.54 mg COD/g VSS was achieved after 1.07 mg N/L FNA + freezing pretreatment at 9 days of AF, which was 2.2, 1.6 and 1.3-fold of the blank, freezing and FNA pretreated samples, respectively. The mechanisms analysis showed that co-pretreatment showed synergetic effects on sludge disintegration and solubilization, which could release more soluble substrates for SCFAs production. The co-pretreatment resulted in slight inhibition to hydrolysis and negligible inhibition to acidogenesis but severe inhibition to methanogenesis, maybe due to less endurance of methanogens.
View less >
View more >Free nitrous acid (FNA) or freezing has been recently utilized as an efficient pretreatment method to increase short-chain fatty acids (SCFAs) yield from waste activated sludge (WAS) anaerobic fermentation (AF). But until now, the performances and mechanisms of the co-pretreatment for SCFAs production are unknown. This research aimed to investigate the AF mechanisms through studying its influence on sludge solubilization and related bioprocesses. WAS was pretreated for 48 h with FNA (1.07 mg N/L), freezing (−5 °C) and combination of FNA and freezing (0.53–2.13 mg N/L FNA at −5 °C), respectively, then conducted batch AF. Experimental results indicated that the optimal total SCFAs yield of 391.19 ± 5.54 mg COD/g VSS was achieved after 1.07 mg N/L FNA + freezing pretreatment at 9 days of AF, which was 2.2, 1.6 and 1.3-fold of the blank, freezing and FNA pretreated samples, respectively. The mechanisms analysis showed that co-pretreatment showed synergetic effects on sludge disintegration and solubilization, which could release more soluble substrates for SCFAs production. The co-pretreatment resulted in slight inhibition to hydrolysis and negligible inhibition to acidogenesis but severe inhibition to methanogenesis, maybe due to less endurance of methanogens.
View less >
Journal Title
Chemosphere
Volume
230
Subject
Environmental management
Wastewater treatment processes