Facial expression analysis under partial occlusion: A survey

View/ Open
File version
Version of Record (VoR)
Author(s)
Zhang, L
Verma, B
Tjondronegoro, D
Chandran, V
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment, and human- computer interaction. The vast majority of completed FEA studies are based on nonoccluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive ...
View more >Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment, and human- computer interaction. The vast majority of completed FEA studies are based on nonoccluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better-informed and benchmarked future work.
View less >
View more >Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment, and human- computer interaction. The vast majority of completed FEA studies are based on nonoccluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better-informed and benchmarked future work.
View less >
Journal Title
Computing Surveys
Volume
51
Issue
2
Copyright Statement
© ACM, 2018. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Volume 51 Issue 2, June 2018, https://doi.org/10.1145/3158369
Subject
Information and computing sciences