• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A two-dimensional analytical solution for the transient short-hot-wire method

    Author(s)
    Woodfield, PL
    Fukai, J
    Fujii, M
    Takata, Y
    Shinzato, K
    Griffith University Author(s)
    Woodfield, Peter L.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Unlike the conventional transient hot-wire method for measuring thermal conductivity, the transient short-hot-wire method uses only one short thermal-conductivity cell. Until now, this method has depended on numerical solutions of the two-dimensional unsteady heat conduction equation to account for end effects. In order to provide an alternative and to confirm the validity of the numerical solutions, a two-dimensional analytical solution for unsteady-state heat conduction is derived using Laplace and finite Fourier transforms. An isothermal boundary condition is assumed for the end of the cell, where the hot wire connects ...
    View more >
    Unlike the conventional transient hot-wire method for measuring thermal conductivity, the transient short-hot-wire method uses only one short thermal-conductivity cell. Until now, this method has depended on numerical solutions of the two-dimensional unsteady heat conduction equation to account for end effects. In order to provide an alternative and to confirm the validity of the numerical solutions, a two-dimensional analytical solution for unsteady-state heat conduction is derived using Laplace and finite Fourier transforms. An isothermal boundary condition is assumed for the end of the cell, where the hot wire connects to the supporting leads. The radial temperature gradient in the wire is neglected. A high-resolution finite-volume numerical solution is found to be in excellent agreement with the present analytical solution.
    View less >
    Journal Title
    International Journal of Thermophysics
    Volume
    29
    Issue
    4
    DOI
    https://doi.org/10.1007/s10765-008-0469-y
    Subject
    Mechanical Engineering not elsewhere classified
    Classical Physics
    Physical Chemistry (incl. Structural)
    Chemical Engineering
    Publication URI
    http://hdl.handle.net/10072/38574
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander