• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A three-dimensional porous Co@C/carbon foam hybrid monolith for exceptional oil-water separation.

    Author(s)
    Ge, X
    Qin, W
    Zhang, H
    Wang, G
    Zhang, Y
    Yu, C
    Griffith University Author(s)
    Zhang, Haimin
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Frequent oil spill accidents and ever-increasing oily wastewater have become serious global environmental problems. To enhance the oil-sorption capacity and simplify the oil-recovery process, the construction of various advanced oil sorbents and oil-collecting devices is of great technological importance. Herein, a three-dimensional (3D) porous carbon-based hybrid monolith has been successfully fabricated, in which cobalt based metal-organic framework (Co-MOF) nanosheets are firstly immobilized on a carbon foam (CF) skeleton (denoted as Co-MOFs/CF) via a facile vapor-phase hydrothermal (VPH) technique followed by carbonation ...
    View more >
    Frequent oil spill accidents and ever-increasing oily wastewater have become serious global environmental problems. To enhance the oil-sorption capacity and simplify the oil-recovery process, the construction of various advanced oil sorbents and oil-collecting devices is of great technological importance. Herein, a three-dimensional (3D) porous carbon-based hybrid monolith has been successfully fabricated, in which cobalt based metal-organic framework (Co-MOF) nanosheets are firstly immobilized on a carbon foam (CF) skeleton (denoted as Co-MOFs/CF) via a facile vapor-phase hydrothermal (VPH) technique followed by carbonation treatment under a N2 atmosphere into Co@C/CF. The resulting Co@C/CF hybrid monolith exhibits an exceptional oil/water separation ability, including high sorption capacity (from 85 to 200 times its own weight toward various solvents and oils), easy collection and remarkable recyclability, as reflected by no obvious reduction in uptake capacity even after 20 cycles of repeated operation. More significantly, the oil-collecting device based on the proposed carbon-based hybrid monolith can rapidly, efficiently, and continuously collect oil from water surfaces, making it a promising candidate for oil-spill remediation.
    View less >
    Journal Title
    Nanoscale
    Volume
    11
    Issue
    25
    DOI
    https://doi.org/10.1039/c9nr02819f
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Physical sciences
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/385815
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander