Discovering MoRFs by trisecting intrinsically disordered protein sequence into terminals and middle regions

View/ Open
File version
Version of Record (VoR)
Author(s)
Sharma, Ronesh
Sharma, Alok
Patil, Ashwini
Tsunoda, Tatsuhiko
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Background:
Molecular Recognition Features (MoRFs) are short protein regions present in intrinsically disordered protein (IDPs) sequences. MoRFs interact with structured partner protein and upon interaction, they undergo a disorder-to-order transition to perform various biological functions. Analyses of MoRFs are important towards understanding their function.
Results:
Performance is reported using the MoRF dataset that has been previously used to compare the other existing MoRF predictors. The performance obtained in this study is equivalent to the benchmarked OPAL predictor, i.e., OPAL achieved AUC of 0.815, whereas the ...
View more >Background: Molecular Recognition Features (MoRFs) are short protein regions present in intrinsically disordered protein (IDPs) sequences. MoRFs interact with structured partner protein and upon interaction, they undergo a disorder-to-order transition to perform various biological functions. Analyses of MoRFs are important towards understanding their function. Results: Performance is reported using the MoRF dataset that has been previously used to compare the other existing MoRF predictors. The performance obtained in this study is equivalent to the benchmarked OPAL predictor, i.e., OPAL achieved AUC of 0.815, whereas the model in this study achieved AUC of 0.819 using TEST set. Conclusion: Achieving comparable performance, the proposed method can be used as an alternative approach for MoRF prediction.
View less >
View more >Background: Molecular Recognition Features (MoRFs) are short protein regions present in intrinsically disordered protein (IDPs) sequences. MoRFs interact with structured partner protein and upon interaction, they undergo a disorder-to-order transition to perform various biological functions. Analyses of MoRFs are important towards understanding their function. Results: Performance is reported using the MoRF dataset that has been previously used to compare the other existing MoRF predictors. The performance obtained in this study is equivalent to the benchmarked OPAL predictor, i.e., OPAL achieved AUC of 0.815, whereas the model in this study achieved AUC of 0.819 using TEST set. Conclusion: Achieving comparable performance, the proposed method can be used as an alternative approach for MoRF prediction.
View less >
Journal Title
BMC BIOINFORMATICS
Volume
19
Copyright Statement
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Subject
Mathematical sciences
Biological sciences