Detecting electronic structure evolution of semiconductor nanocrystals by magnetic circular dichroism spectroscopy.
Author(s)
Gao, Xiaoqing
Zhang, Xiuwen
Yang, Xuekang
Zhao, Luyang
Han, Bing
Alanagh, Hamideh Rezvani
Tang, Zhiyong
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
The evolution of electronic states of nanocrystals under shape variation is hardly detected by conventional optical and electronic instruments due to the condensed electronic levels of nanocrystals. Herein, we demonstrate that magnetic circular dichroism (MCD) spectroscopy is a high-resolution method to monitor this delicate progress on account of the sensitive Zeeman response to electronic states. In particular, the MCD intensity of the first excitonic transition exponentially decreases with the shape changing from quantum dots to quantum rods owing to the increased density of valence pz state with elongation in the z ...
View more >The evolution of electronic states of nanocrystals under shape variation is hardly detected by conventional optical and electronic instruments due to the condensed electronic levels of nanocrystals. Herein, we demonstrate that magnetic circular dichroism (MCD) spectroscopy is a high-resolution method to monitor this delicate progress on account of the sensitive Zeeman response to electronic states. In particular, the MCD intensity of the first excitonic transition exponentially decreases with the shape changing from quantum dots to quantum rods owing to the increased density of valence pz state with elongation in the z direction, which contributes much less to MCD intensity compared with p±. This work provides a simple but effective strategy for understanding the electronic state evolution in various semiconductor nanomaterials.
View less >
View more >The evolution of electronic states of nanocrystals under shape variation is hardly detected by conventional optical and electronic instruments due to the condensed electronic levels of nanocrystals. Herein, we demonstrate that magnetic circular dichroism (MCD) spectroscopy is a high-resolution method to monitor this delicate progress on account of the sensitive Zeeman response to electronic states. In particular, the MCD intensity of the first excitonic transition exponentially decreases with the shape changing from quantum dots to quantum rods owing to the increased density of valence pz state with elongation in the z direction, which contributes much less to MCD intensity compared with p±. This work provides a simple but effective strategy for understanding the electronic state evolution in various semiconductor nanomaterials.
View less >
Journal Title
Nanoscale
Subject
Physical sciences
Chemical sciences