• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Elevated CO<inf>2</inf> leads to enhanced photosynthesis but decreased growth in early life stages of reef building coralline algae

    Thumbnail
    View/Open
    DIAZ-PULIDO157040.pdf (4.358Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Ordoñez, A
    Wangpraseurt, D
    Lyndby, NH
    Kühl, M
    Diaz-Pulido, G
    Griffith University Author(s)
    Diaz-Pulido, Guillermo
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Crustose coralline algae (CCA) are key organisms in coral reef ecosystems, where they contribute to reef building and substrate stabilization. While ocean acidification due to increasing CO2can affect the biology, physiology and ecology of fully developed CCA, the impacts of elevated CO2on the early life stages of CCA are much less explored. We assessed the photosynthetic activity and growth of 10-day-old recruits of the reef-building crustose coralline alga Porolithon cf. onkodes exposed to ambient and enhanced CO2seawater concentration causing a downward shift in pH of ~0.3 units. Growth of the CCA was estimated using ...
    View more >
    Crustose coralline algae (CCA) are key organisms in coral reef ecosystems, where they contribute to reef building and substrate stabilization. While ocean acidification due to increasing CO2can affect the biology, physiology and ecology of fully developed CCA, the impacts of elevated CO2on the early life stages of CCA are much less explored. We assessed the photosynthetic activity and growth of 10-day-old recruits of the reef-building crustose coralline alga Porolithon cf. onkodes exposed to ambient and enhanced CO2seawater concentration causing a downward shift in pH of ~0.3 units. Growth of the CCA was estimated using measurements of crust thickness and marginal expansion, while photosynthetic activity was studied with O2microsensors. We found that elevated seawater CO2enhanced gross photosynthesis and respiration, but significantly reduced vertical and marginal growth of the early life stages of P. cf. onkodes. Elevated CO2stimulated photosynthesis, particularly at high irradiance, likely due to increased availability of CO2, but this increase did not translate into increased algal growth as expected, suggesting a decoupling of these two processes under ocean acidification scenarios. This study confirms the sensitivity of early stages of CCA to elevated CO2and identifies complexities in the physiological processes underlying the decreased growth and abundance in these important coral reef builders upon ocean acidification.
    View less >
    Journal Title
    Frontiers in Marine Science
    Volume
    5
    Issue
    JAN
    DOI
    https://doi.org/10.3389/fmars.2018.00495
    Copyright Statement
    © 2019 Ordoñez, Wangpraseurt, Lyndby, Kühl and Diaz-Pulido. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
    Subject
    Oceanography
    Ecology
    Publication URI
    http://hdl.handle.net/10072/385926
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander