ON THE TOPOGRAPHY-DRIVEN VORTICITY PRODUCTION IN SHALLOW LAKES

No Thumbnail Available
File version
Author(s)
Sandor, Balazs
Torma, Peter
Szabo, K Gabor
Zhang, Hong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
License
Abstract

We analyse the vorticity production of lake-scale circulation in wind-induced shallow flows using a linear elliptic partial differential equation. The linear equation is derived from the vorticity form of the shallow-water equation using a linear bed friction formula. The features of the wind-induced steady-state flow are analysed in a circular basin with topography as a concave paraboloid, having a quadratic pile in the middle of the basin. In our study, the size of the pile varies by a size parameter. The vorticity production due to the gradient in the topography (and the distance of the boundary) makes the streamlines parallel to topographical contours, and beyond a critical size parameter, it results in a secondary vortex pair. We compare qualitatively and quantitatively the steady-state circulation patterns and vortex evolution of the flow fields calculated by our linear vorticity model and the full, nonlinear shallow-water equations. From these results, we hypothesize that the steady-state topographical vorticity production in lake-scale wind-induced circulations can be described by the equilibrium of the wind friction field and the bed friction field. Moreover, the latter can also be considered as a linear function of the velocity vector field, and hence the problem can be described by a linear equation.

Journal Title
ANZIAM JOURNAL
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Mathematical sciences
Environmental sciences
Engineering
Persistent link to this record
Citation
Collections