The trends and challenges of fiber reinforced additive manufacturing
Author(s)
Fidan, Ismail
Imeri, Astrit
Gupta, Ankit
Hasanov, Seymur
Nasirov, Aslan
Elliott, Amy
Alifui-Segbaya, Frank
Nanami, Norimichi
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
In the last few years, utilizing fiber reinforced additive manufacturing (FRAM)-based components in several industries has become quite popular. Compared to conventional AM technologies, FRAM offered complementary solutions to their needs. In general, fibers have been traditionally used in many manufacturing processes for various reasons. However, using conventional methods, there are obstacles in obtaining the desired complex geometries and low setup costs. AM offers possible avoidance of these limitations. Shape complexity, infill density, and manufacturing lead times are no longer barriers. Bridging AM with fiber reinforced ...
View more >In the last few years, utilizing fiber reinforced additive manufacturing (FRAM)-based components in several industries has become quite popular. Compared to conventional AM technologies, FRAM offered complementary solutions to their needs. In general, fibers have been traditionally used in many manufacturing processes for various reasons. However, using conventional methods, there are obstacles in obtaining the desired complex geometries and low setup costs. AM offers possible avoidance of these limitations. Shape complexity, infill density, and manufacturing lead times are no longer barriers. Bridging AM with fiber reinforced materials offers a vast opportunity for lightweight and strong parts. Depending on the affinity, fibers with different structures can be mixed with different matrix materials and, thus, create stronger parts with improved mechanical properties. Process parameters like raster angle, infill speed, layer thickness, and nozzle temperature also strongly impact physical properties of FRAM products and are considered carefully. FRAM-based components are used in many industries such as aerospace, motorsports, and biomedicine, where the weight, strength, and complexity of parts are critical. Hence, numerous industrial companies and research facilities are investigating the implementation and adaptation of FRAM to their requirements. Studies are generally conducted on new materials, new FRAM technologies, the effect of fiber orientations and fraction on the performance of parts, improving the printing parameters, and other subjects. This study reports the current trends and challenges that FRAM is bringing to AM ecosystem.
View less >
View more >In the last few years, utilizing fiber reinforced additive manufacturing (FRAM)-based components in several industries has become quite popular. Compared to conventional AM technologies, FRAM offered complementary solutions to their needs. In general, fibers have been traditionally used in many manufacturing processes for various reasons. However, using conventional methods, there are obstacles in obtaining the desired complex geometries and low setup costs. AM offers possible avoidance of these limitations. Shape complexity, infill density, and manufacturing lead times are no longer barriers. Bridging AM with fiber reinforced materials offers a vast opportunity for lightweight and strong parts. Depending on the affinity, fibers with different structures can be mixed with different matrix materials and, thus, create stronger parts with improved mechanical properties. Process parameters like raster angle, infill speed, layer thickness, and nozzle temperature also strongly impact physical properties of FRAM products and are considered carefully. FRAM-based components are used in many industries such as aerospace, motorsports, and biomedicine, where the weight, strength, and complexity of parts are critical. Hence, numerous industrial companies and research facilities are investigating the implementation and adaptation of FRAM to their requirements. Studies are generally conducted on new materials, new FRAM technologies, the effect of fiber orientations and fraction on the performance of parts, improving the printing parameters, and other subjects. This study reports the current trends and challenges that FRAM is bringing to AM ecosystem.
View less >
Journal Title
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
Volume
102
Issue
5-8
Subject
Dentistry
Materials engineering