• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Extreme-duration drought impacts on soil CO <inf>2</inf> efflux are regulated by plant species composition

    Author(s)
    Zhou, C
    Biederman, JA
    Zhang, H
    Li, L
    Cui, X
    Kuzyakov, Y
    Hao, Y
    Wang, Y
    Griffith University Author(s)
    LI, Linfeng
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Aims: Long-duration drought can alter ecosystem plant species composition with subsequent effects on carbon cycling. We conducted a rainfall manipulation field experiment to address the question: how does drought-induced vegetation change, specifically shrub encroachment into grasslands, regulate impacts of subsequent drought on soil CO2 efflux (Rs) and its components (autotrophic and heterotrophic, Ra and Rh)? Methods: We conducted a two-year experiment in Inner Mongolia plateau, China, using constructed steppe communities including graminoids, shrubs and their mixture (graminoid + shrub) to test the effects of ...
    View more >
    Aims: Long-duration drought can alter ecosystem plant species composition with subsequent effects on carbon cycling. We conducted a rainfall manipulation field experiment to address the question: how does drought-induced vegetation change, specifically shrub encroachment into grasslands, regulate impacts of subsequent drought on soil CO2 efflux (Rs) and its components (autotrophic and heterotrophic, Ra and Rh)? Methods: We conducted a two-year experiment in Inner Mongolia plateau, China, using constructed steppe communities including graminoids, shrubs and their mixture (graminoid + shrub) to test the effects of extreme-duration drought (60-yr return time) on Rs, Rh and Ra. Results: Our results indicated that extreme-duration drought reduced net primary production, with subsequent effects on Rs, Rh and Ra in all three vegetation communities. There was a larger relative decline in Ra (35–54%) than Rs (30–37%) and Rh (28–35%). Interestingly, we found Rs in graminoids is higher than in shrubs under extreme drought. Meanwhile, Rh declines were largest in the shrub community. Although Ra and Rh both decreased rapidly during drought treatment, Rh recovered quickly after the drought, while Ra did not, limiting the Rs recovery. Conclusions: This study suggests that plant species composition regulates several aspects of soil CO2 efflux response to climate extremes. This regulation may be limited by above- and below-ground net primary production depending on soil water availability. The results of this experiment address a critical knowledge gap in the relationship between soil respiration and plant species composition. With shrub encroachment into grasslands, total soil respiration is reduced and can partly offset the effect of reduction in productivity under drought stress.
    View less >
    Journal Title
    Plant and Soil
    Volume
    439
    Issue
    1-2
    DOI
    https://doi.org/10.1007/s11104-019-04025-w
    Subject
    Environmental sciences
    Biological sciences
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/386205
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander