Show simple item record

dc.contributor.authorWang, S
dc.contributor.authorQin, J
dc.contributor.authorZhao, Y
dc.contributor.authorDuan, L
dc.contributor.authorWang, J
dc.contributor.authorGao, W
dc.contributor.authorWang, R
dc.contributor.authorWang, C
dc.contributor.authorPal, M
dc.contributor.authorWu, ZS
dc.contributor.authorLi, W
dc.contributor.authorZhao, D
dc.date.accessioned2019-07-10T06:01:32Z
dc.date.available2019-07-10T06:01:32Z
dc.date.issued2019
dc.identifier.issn1864-5631
dc.identifier.doi10.1002/cssc.201901137
dc.identifier.urihttp://hdl.handle.net/10072/386247
dc.description.abstractFacile synthesis of ultrahigh surface area porous carbons with well-defined functionalities such as N-doping remains a formidable challenge as extensive pore creation results in significant damage to the active sites. Herein, an ultrahigh surface area, N-doped hierarchically porous carbon was prepared through a multicomponent co-assembly approach. The resultant N-doped hierarchically porous carbon (N-HPC) possessed an ultrahigh surface area (≈1960 m2  g-1 ), a uniform interpenetrating micropore (≈1.3 nm) and large mesopore (≈7.6 nm) size, and high N-doping in the carbon frameworks (≈5 wt %). The N-HPC exhibited a high specific capacitance (358 F g-1 at 0.5 A g-1 ) as a supercapacitor electrode in aqueous alkaline electrolyte with a stable cycling performance after10 000 charge/discharge cycles. Moreover, as a CO2 absorbent, N-HPC displayed an adsorption capacity of 29.0 mmol g-1 at 0 °C under a high pressure of 30 bar.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherWILEY
dc.relation.ispartoflocationGermany
dc.relation.ispartofjournalChemSusChem
dc.subject.fieldofresearchAnalytical Chemistry
dc.subject.fieldofresearchOther Chemical Sciences
dc.subject.fieldofresearchChemical Engineering
dc.subject.fieldofresearchcode0301
dc.subject.fieldofresearchcode0399
dc.subject.fieldofresearchcode0904
dc.titleUltrahigh Surface Area N-Doped Hierarchically Porous Carbon for Enhanced CO2 Capture and Electrochemical Energy Storage.
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.description.notepublicThis publication has been entered into Griffith Research Online as an Advanced Online Version.
gro.hasfulltextNo Full Text
gro.griffith.authorZhao, Dongyuan


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record