• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review

    Author(s)
    Song, Ming-Shi
    Zeng, Rong-Chang
    Ding, Yun-Fei
    Li, Rachel W
    Easton, Mark
    Cole, Ivan
    Birbilis, Nick
    Chen, Xiao-Bo
    Griffith University Author(s)
    Cole, Ivan
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Magnesium (Mg) alloys possess comparable physical and mechanical properties to bone, making them an outstanding candidate of implant materials for bone fracture treatment. In addition to the excellent biocompatibility, and bioactivity, the engagement of Mg alloys is key for a number of biological functionalities in the human body. The unique biodegradation nature of Mg alloy implants implies that it may not require a secondary removal procedure when the expected supporting tasks accomplish, as they may simply and safely “disappear” over time. Nonetheless, the demonstrated drawback of potentially rapid degradation, is an issue ...
    View more >
    Magnesium (Mg) alloys possess comparable physical and mechanical properties to bone, making them an outstanding candidate of implant materials for bone fracture treatment. In addition to the excellent biocompatibility, and bioactivity, the engagement of Mg alloys is key for a number of biological functionalities in the human body. The unique biodegradation nature of Mg alloy implants implies that it may not require a secondary removal procedure when the expected supporting tasks accomplish, as they may simply and safely “disappear” over time. Nonetheless, the demonstrated drawback of potentially rapid degradation, is an issue that must be addressed appropriately for Mg implants and is consequently given unique attention in this review article. Herein, the critical criteria and the state-of-the-art strategies for controlling the degradation process of Mg alloys are reported. Furthermore, future developments of biodegradable Mg and its alloys systems with satisfactory specifications for clinical trials and deployment, are discussed. This review aims to provide information to materials scientists and clinical practitioners in the context of developing practical biodegradable Mg alloys.
    View less >
    Journal Title
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
    Volume
    35
    Issue
    4
    DOI
    https://doi.org/10.1016/j.jmst.2018.10.008
    Subject
    Manufacturing engineering
    Materials engineering
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/386301
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander