• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A practical feature-engineering framework for electricity theft detection in smart grids

    Author(s)
    Razavi, Rouzbeh
    Gharipour, Amin
    Fleury, Martin
    Akpan, Ikpe Justice
    Griffith University Author(s)
    Gharipour, Amin
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Despite many potential advantages, Advanced Metering Infrastructures have introduced new ways to falsify meter readings and commit electricity theft. This study contributes a new model-agnostic, feature-engineering framework for theft detection in smart grids. The framework introduces a combination of Finite Mixture Model clustering for customer segmentation and a Genetic Programming algorithm for identifying new features suitable for prediction. Utilizing demand data from more than 4000 households, a Gradient Boosting Machine algorithm is applied within the framework, significantly outperforming the results of prior ...
    View more >
    Despite many potential advantages, Advanced Metering Infrastructures have introduced new ways to falsify meter readings and commit electricity theft. This study contributes a new model-agnostic, feature-engineering framework for theft detection in smart grids. The framework introduces a combination of Finite Mixture Model clustering for customer segmentation and a Genetic Programming algorithm for identifying new features suitable for prediction. Utilizing demand data from more than 4000 households, a Gradient Boosting Machine algorithm is applied within the framework, significantly outperforming the results of prior machine-learning, theft-detection methods. This study further examines some important practical aspects of deploying theft detection including: the detection delay; the required size of historical demand data; the accuracy in detecting thefts of various types and intensity; detecting irregular and unseen attacks; and the computational complexity of the detection algorithm.
    View less >
    Journal Title
    APPLIED ENERGY
    Volume
    238
    DOI
    https://doi.org/10.1016/j.apenergy.2019.01.076
    Subject
    Engineering
    Economics
    Publication URI
    http://hdl.handle.net/10072/386358
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander