• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Observing momentum disturbance in double-slit "which-way" measurements

    Thumbnail
    View/Open
    Wiseman232820.pdf (362.6Kb)
    Author(s)
    Xiao, Ya
    Wiseman, Howard M
    Xu, Jin-Shi
    Kedem, Yaron
    Li, Chuan-Feng
    Guo, Guang-Can
    Griffith University Author(s)
    Wiseman, Howard M.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Making a “which-way” measurement (WWM) to identify which slit a particle goes through in a double-slit apparatus will reduce the visibility of interference fringes. There has been a long-standing controversy over whether this can be attributed to an uncontrollable momentum transfer. Here, by reconstructing the Bohmian trajectories of single photons, we experimentally obtain the distribution of momentum change. For our WWM, the change we see is not a momentum kick that occurs at the point of the WWM, but rather one that nonclassically accumulates during the propagation of the photons. We further confirm a quantitative relation ...
    View more >
    Making a “which-way” measurement (WWM) to identify which slit a particle goes through in a double-slit apparatus will reduce the visibility of interference fringes. There has been a long-standing controversy over whether this can be attributed to an uncontrollable momentum transfer. Here, by reconstructing the Bohmian trajectories of single photons, we experimentally obtain the distribution of momentum change. For our WWM, the change we see is not a momentum kick that occurs at the point of the WWM, but rather one that nonclassically accumulates during the propagation of the photons. We further confirm a quantitative relation between the loss of visibility consequent on a WWM and the total (late-time) momentum disturbance. Our results emphasize the role of the Bohmian momentum in giving an intuitive picture of wave-particle duality and complementarity.
    View less >
    Journal Title
    Science Advances
    Volume
    5
    Issue
    6
    DOI
    https://doi.org/10.1126/sciadv.aav9547
    Copyright Statement
    © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC), which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
    Subject
    Quantum Physics
    Publication URI
    http://hdl.handle.net/10072/386367
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander