• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change

    Author(s)
    Burford, MA
    Carey, C
    Hamilton, DP
    Huisman, J
    Paerl, HW
    Wood, SA
    Wulff, A
    Griffith University Author(s)
    Hamilton, David P.
    Burford, Michele A.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Harmful cyanobacterial blooms (=cyanoHABs) are an increasing feature of many waterbodies throughout the world. Many bloom-forming species produce toxins, making them of particular concern for drinking water supplies, recreation and fisheries in waterbodies along the freshwater to marine continuum. Global changes resulting from human impacts, such as climate change, over-enrichment and hydrological alterations of waterways, are major drivers of cyanoHAB proliferation and persistence. This review advocates that to better predict and manage cyanoHABs in a changing world, researchers need to leverage studies undertaken to date, ...
    View more >
    Harmful cyanobacterial blooms (=cyanoHABs) are an increasing feature of many waterbodies throughout the world. Many bloom-forming species produce toxins, making them of particular concern for drinking water supplies, recreation and fisheries in waterbodies along the freshwater to marine continuum. Global changes resulting from human impacts, such as climate change, over-enrichment and hydrological alterations of waterways, are major drivers of cyanoHAB proliferation and persistence. This review advocates that to better predict and manage cyanoHABs in a changing world, researchers need to leverage studies undertaken to date, but adopt a more complex and definitive suite of experiments, observations, and models which can effectively capture the temporal scales of processes driven by eutrophication and a changing climate. Better integration of laboratory culture and field experiments, as well as whole system and multiple-system studies are needed to improve confidence in models predicting impacts of climate change and anthropogenic over-enrichment and hydrological modifications. Recent studies examining adaptation of species and strains to long-term perturbations, e.g. temperature and carbon dioxide (CO2) levels, as well as incorporating multi-species and multi-stressor approaches emphasize the limitations of approaches focused on single stressors and individual species. There are also emerging species of concern, such as toxic benthic cyanobacteria, for which the effects of global change are less well understood, and require more detailed study. This review provides approaches and examples of studies tackling the challenging issue of understanding how global changes will affect cyanoHABs, and identifies critical information needs for effective prediction and management.
    View less >
    Journal Title
    Harmful Algae
    DOI
    https://doi.org/10.1016/j.hal.2019.04.004
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Environmental Sciences
    Biological Sciences
    Publication URI
    http://hdl.handle.net/10072/386390
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander